Elements Docs

One toolchain, six languages, all major platforms: Elements is a modern development tool stack for creating applications for all of today's platforms,
using either our very own Oxygene Language or the C#, Java, Mercury, Go or Swift languages.

All the languages let you leverage the same language skill set, no matter what platform(s) you are developing for, without losing the benefit of working
natively and directly with the underlying platforms — be it the .NET Framework, the Java and Android Runtime Libraries, theCocoa and Cocoa Touch
Frameworks for the Apple platforms, or our new Island platform for CPU-native Windows, Linux and Android NDK projects.

RemObjects Oxygene is our own state-of-the art programming language for the 21st century. Combining ideas from many origins along with original
concepts unique to Oxygene, the language provides an unprecedented level of productivity.

Oxygene is the most advanced and most versatile general purpose programming language available today.

RemObjects C# is 100% C# — now available natively on the Java/Android and Cocoa platforms as well. Primarily designed for developers already
familiar with C# on .NET, it allows you to expand your existing skills to iOS, Android and Mac development in a snap.

RemObjects lodine is our take on the Java programming language — again brought over to now be usable on all platfroms, including .NET, Cocoa
and Island.

RemObjects Mercury is an implementation of the BASIC programming language that is fully code-compatible with Microsoft Visual Basic.NET™, but
takes it to the next level, and to all elements platforms.

RemObjects Go adds support for the Go language (and access to the vast Go Base Library for all languages).

RemObjects Swift is our implementation of Apple's new Swift programming language — brought over to Java/Android and .NET/Mono development
(as well as of course Cocoa).

Depending on how you roll, you can pick your language of choice, or you can mix any of the six languages in the same project (on a file-by-file basis)
to use each language for its strengths, where applicable.

Documentation Overview

e The first six sections, Oxygene, C#, lodine, Mercury, Go & Swift and explore each of the languages individually. Go here to get a first introduction
to your language and to learn about specific language features, syntaxes and capabilities.

o Concepts explores specific ideas and technologies available in the languages in more depth. Many of these apply to all languages, while some
are specific to more advanced features only available in our own Oxygene language.

Platforms dives into topics specific to the individual platforms -.NET, Cocoa, Android, Java, WebAssembly and native Windows and Linux.

e Projects talks about advanced topics for working with projects, fromProject Settings over References to Shared Projects.

e Then there are sections about working in the two IDEs for Elements Visual Studio on Windows, our ownFEire for Mac and Water for Windows. We
also cover more general Tools and Technologies relevant to both.

e The Compiler, EBuild and Tools sections dive deeper into the underlying compiler and build chain technolofies, and related tools.

e There are a range of Tutorials on various topics, from getting to learn the language(s) to diving into creating your first app for a given platform.
We'll be adding more of these over time.

Finally, there's the API Reference, where we document the handful of optional libraries that ship with Elements, such asSugar, as well as the
System Functions, and Standard Types.

More Resources

Outside of this documentation site, we think you will find these links useful:

¢ Elements Homepage — elementscompiler.com
e Download your free 30-day Trial
e Buy Elements now

Support & Discussion Forums

Elements Support Overview
Elements Forum

Oxygene Language Forum
C# Language Forum

Swift Language Forum
lodine/Java Language Forum
Gold/Go Language Forum
Fire IDE Forum

Water IDE Forum

® o o 0o 0 0 0 o o

Other Useful Links

e About Beta Access
e What's New in Elements
e Versions

RemObjects Oxygene

One of six languages in the Elements family, Oxygene is based on the foundation of Object Pascal but - in contrast to our C# and
Swift implementations - we have been aggressively driving Object Pascal forward over the past ten years, significantly improving the language year
after year after year.

As a result, Oxygene is a language that is decidedly Object Pascal, and will make you feel immediately at home if you come from a Delphi or Object
Pascal background, but at the same time is a modern language for the 21st century, with many, many advanced language features that take your
productivity to the next level.

The Oxygene compiler will continue to evolve rapidly, with new features coming to the language with almost every release.

Learn More

Oxygene Language Introduction

Oxygene for Delphi Developers

Work with Oxygene in Fire or Wateron Mac and Windows

Work with Oxygene in Visual Studio on Windows

The Platforms — .NET, Cocoa, Android, Java, Windows, Linux and WebAssembly
Elements RTL — An optional cross-platform base library

EUnit — a cross-platform unit testing framework

Oxygene Home Page

Getting Started

e o o o 0o 0o o o

e Get set up with Fire on Mac
e Get set up with Wateron Windows
o Get set up with Visual Studio on Windows

Support

e Oxygene Discussion Forum on Talk

The Language

Oxygene is a powerful general purpose programming language, designed to let developers create all imaginable kinds of projects on a wide variety of
platforms.

To achieve this, it provides a combination of language features that ease the development processes — from basic Object Oriented language concepts
found in most modern languages (such as the concept of classes with methods, properties and events) to sophisticated specialized language features
that enable and ease specific development tasks (such as creating safe, multi-threaded applications) — many of them unique to Oxygene.

All of the provided features are based on the foundation of Object Pascal and stay true to the language design paradigms that make Pascal great,
readable and discoverable.

Like all the Elements languages, Oxygene comes with support for four distinctPlatforms: .NET, Cocoa (the platform behind macOS and iOS), Android,
ava, Windows, Linux and WebAssembly.

Object-Oriented Background

At heart, Oxygene is a purely object oriented language, meaning that all code is contained inClasses and otherTypes, which can expose Members
such as Methods, Properties and Events.

On the Cocoa and Island platforms, additional allowances are made for accessing non-object-oriented platform APIs, like the C runtime functions.

Keywords

Object Pascal, just like Pascal before it, is easily readable by both humans and computers. This is by design, and is accomplished through the use of
English words instead of symbols to define most of the language. For example, blocks of code are delimited with the begin and end keywords in sharp
contrast to the C family of languages (which includes Elements' three other languages, C#, Swift and Java), which use the curly braces { &} to
accomplish the same task.

This extends through all aspects of the language, aiming for a "read as plain english" approach for features, where feasible. For example, where C#,
Swift and Java use a cryptic ? to mark nullability, Oxygene uses the nullable keyword, and where C-style languages use& and |, Oxygene relies on
readable operator names such as and and or.

Case & Naming Conventions

The language itself, is not case sensitive, but it is casepreserving, and Oxygene - unlike older Pascal dialects - iscase-preserving, and will emit
warnings (and suggest automatic fixes) if identifier case is used inconsistently. However two identifiers that only differ in case are not permissable.

By convention, reserved words (Keywords) in Pascal are written in lowercase, but the compiler will permit and recognize uppercase and mixed case
keywords, as well.

In older Pascal dialects, like Turbo Pascal and Delphi, it was convention to prefix class names with a; this is no longer the case with Oxygene
(although Oxygene does preserve the convention of prefixing interface types with I to distinguish them from regular classes).

Aside from that, there are no formal naming or case conventions in Oxygene. Typically, the naming and case follows the conventions of the underlying
framework - which is a mixture of "PascalCase" and "camelCase", depending on the platform. For cross-platform or non-platform-specific code,
"PascalCase" is recommended.

Structured Programming

One of the things that differentiated Pascal when it was introduced is that it was designed to be a structured programming language. This translates
into two things: The first is that it was designed to support complex data structures like lists and records. The second is that it supports various control
structures like for, case, while, repeat, etc., as well as procedures & functions, without the need to rely ongoto or jump like unstructured languages (in fact,
Oxygene drops the goto keyword that is available in legacy Pascal altogether).

Classes

Classes defined in Oxygene belong to a class hierarchy rooted in a base object calledObject (which maps to System.Object in .NET, java.Object in Java and
Foundation.NSObject in Cocoa). Each class declaration either explicitly specifies an ancestor class, or will implicitly descend fromObject.

Classes inherit all members from their ancestor classes and are thus said toextend that class - commonly by adding additional members or providing
overridden implementations of select members defined in the ancestors.

Classes can be marked as abstract to indicate that they need to be extended in order to be instantiated and used. They can also be marked asealed to
indicate that they cannot be extended further.

Methods and Other Class Members

Methods define the execution flow of applications written in Oxygene. Each method consists of a list ofStatements that get executed in turn when a
method is called. Statement types include loops, conditional statements, logical and mathematical expressions or calculations, or calls to other
members in the same or different classes.

Pascal originally differentiated between procedures and functions (the latter being a procedure that returned a result) by using different identifiers,
and early Object Pascal implementations carried this legacy over when introducing object-orientation, although this terminology no longer seemed
accurate. The Oxygene language no longer differentiates the two by keyword and consistently uses the method keyword for, well, methods (although
the procedure and function keywords remain available as compatibility option).

Properties provide controlled access to data contained within a class instance, and can be read/write, read-only or (in rare cases) write-only. Events
allow objects to retain references to call-back methods on other objects that they can call, when necessary.

While methods and properties (next to private fields or instance variables) are the two core kinds of members that make up classes, other more
advanced member kinds are supported as well, such as Events, Invariants or Nested Types.

Class members can be declared at differentvisibility levels to control how they can be accessed from outside the class they are in. The three most
important levels include private visibility, which restricts access to the class itself; protected visibility, which allows access only from descendants of the
class; and public, which allows any code in the project to access the member (but several more fine-grained visibility levels are available as well).

With Oxygene being a truly object oriented language, all code you write will generally be contained in classes (or encoded in other types), with no
"global" functions or other elements.

Other Types

Classes are the core of any object oriented program, but they are complemented by a range of other kinds of types that enrich the language:

« Interfaces are abstract types that define a set of shared methods, events or properties that can be implemented by one or more (otherwise
unrelated) classes. Classes that implement the same interface can be accessed in identical ways by code that might otherwise be unaware of the
concrete class types. This makes it easy to write code that can act on "similar" classes, without those classes having to share a common
ancestor. Many developers consider Interfaces to be a cleaner replacement for multiple inheritance, which Oxygene intentionally does not

support.
e Records behave similar to classes, but arestack-based rather than heap-based. They can also contain fields, methods and properties, like classes
do.

e Enums are simple types that provide a collection of named values.
o Standard types include Simple Types such as integers, floats and strings, as well as more complex types such as arrays, sets andModified Types.

Advanced Concepts

The Oxygene language contains numerous advanced language concepts, many of which are common to most modern languages, some of which are
inspired by other less mainstream languages and yet others which are entirely unique to Oxygene.

e Class Contracts allow optional code to be included with class definitions and method implementations to enforce class consistency. These
contracts can be enforced at runtime, leading to more precise and timely error reporting when constraints are not met as expected.

e Sequences and Query Expressions are deeply integrated into the language to work with various types oflists of objects, iterate them, and
perform advanced queries (such as filtering, sorting or combining) on them.

e Several language constructs for Parallelism are integrated into the language to make it easy to write multi-threaded code that scales well from
single-CPU to multi-core computers. These include Parallel Loops, Future Types, Asynchronous Expressions and more.

e Duck Typing and the Dynamic type provide more weakly typed language constructs akin to more dynamic languages such as Objective-C or
JavaScript, where needed.

e Generics provide for classes to be customizable to work with different types without having to write separate implementations. For example, a
generic list class can be implemented (or indeed provided by the underlying frameworks) and then be instantiated to be a list of a very specific
concrete type.

File Structure

The Code File Structure topic explains how an Oxygene.pas file is structured and how the types and code are laid out, within.

Cross-Platform Compatibility

The language aims at being ~99% identical and compatible between the platforms, but there area few subtle differences owed to the underlying
platforms, covered in the Platform Differences Overview.

With very few minor exceptions dictated by the underlying runtimes, the Oxygene language is designed to be virtually the same across all three
supported development environments: .NET, Cocoa and Java.

This means that the language syntax is 99% identical on all three platforms, and that a lot of the code you write can be shared between the platforms
(as long as it does not use platform-specific APIs, of course), and that all the language knowledge and experience you build up using Oxygene can be
applied to all platforms. Using the same language also makes it easier and more intuitive to work on apps for the different platforms, without having to
"switch gears" between - say - C#, Java and Objective-C all the time.

And the open source Elements RTL base library makes sharing code between projects across all three runtimes even easier.

Code File Structure

All the code in an Oxygene project is divided into code files. A code file can contain a single class (often recommended) or more than one class or
auxiliary type. By default, all types defined in a code file are members of the same Namespace; that namespace is specified at the top of the file via
the namespace keyword.

Multiple files, or even multiple projects, can of course contribute to the same namespace - in fact, for small to medium projects, it will be common for
all types to be situated in the project's one and only namespace. You can read more about this in the Namespace and Uses topic.

Classic Interface/Implementation Split

After the namespace declaration, traditionally each code file is divided into two parts, theinterface and the implementation section.

The interface section is similar to the separate header file found in many languages from the C family. It defines the public interface of the code
found in that code file, including Types and their Members' signatures.

The implementation section contains the actual, well, implementation. This includes code that implements the classes defined in the interface
section. The implementation section provides a level of encapsulation of the complexity of the implemented code.

The advantage of this separation is that it provides a convenient human- and computer-readable summary of the APIs in the code file. This speeds up
human navigation and comprehension of the types when consuming the classes elsewhere.

Types can be defined in the implementation section as well, but that makes them private to the file and inaccessible from rest of the project (similar to
unit level Visibility).

Both the interface and the implementation sections may include auses clause that can bring additional namespaces "into scope".uses clauses are
covered in more detail in the Namespace and Uses topic

namespace LutherCorp.WorldDomination;
interface

uses
LutherCorp.DominationTools;

type
WorldDominator = class
public
method AchieveWorldDomination;
end;

implementation

method WorldDominator.AchieveWorldDomination;
begin

// Do something

end;

end.

The end of every code file is indicated with theend keyword followed by a period. Everything beyond that point will be ignored.

Unified Class Syntax

Oxygene also supports declaring and implementing types in a more unified syntax, where the body of aMethod can be directly attached to its
declaration. This provides a code layout that is more similar to modern C derivatives such C# or Swift.

There are advantages and drawbacks to both code-styles, and Oxygene does not enforce a struct choice; the two styles can me mixed, with some
methods having their implementation at the top, and others being deferred in classic style to the implementation section.

If the implementation section of a file contains no code, both theinterface and the implementation keywords can be omitted:
namespace LutherCorp.WorldDomination;

uses
LutherCorp.DominationTools;

type
WorldDominator = class
public
method AchieveWorldDomination;
begin
/I Do something end;
end;
end;

end.

Again the end of the code file is indicated with theend keyword followed by a period, and everything beyond that point will be ignored.

See Also

e Namespace and Uses
e Types and their Members

Code Style Guide

This document aims at providing a style guide for how to structure and format code written in the Oxygene language.

The guidelines laid out here are by no means mandatory, and an Oxygene developer may choose to adopt all, some, or none of the guidelines
provided. However, our IDEs are designed to work best when code follows the guidelines, and we try to adhere to these guidelines for all code in
Elements and its surrounding libraries, ourselves. Code submissions and pull requests for the open-source Elements libraries must meet these
guidelines, as well.

Keywords

All keywords shall be used in their lowercase form.

Use the method keyword instead of procedure or function.

Use the block keyword instead of delegate, method, procedure or function, for Block declarations.
Use the namespace keyword instead of unit, at the beginning of a file.

e o o o

Casing & Naming Conventions

While Oxygene is case insensitive, it by defaultpreserves case and warns when identifiers differ in case between their declaration and use. These
warnings should be avoided, and care should be taken to use the proper case. We recommend enabling Auto-Fix for case issues.

.

Again, all keywords shoul;d be lower case

Type names should use a PascalCase form, without theT prefix common in other Pascal dialects. Upper-case abbreviation prefixes should also
be avoided where posisble. Use Namespaces instead.

Interface types should use an| prefix, followed by a PascalCased name.

Public type Members (that should exclude fields) should use PascalCase names unless the platform conventions for a single-platform project
suggest otherwise.

e Variables usually use a single-letter lower-case prefix, followed by a PascalCase name:

o Fields should use anf prefix: fName

.

o o

o Local Variables should use an| prefix: IName
o Parameters should use ana prefix: aName
o Only loop Variables orvery short-lived helpers variables may use short, lowercase names:i, x.

Code Block Structure

If anif uses a begin/end block, any connected else clause must also usebegin/end, and vice versa. In other words, anif clause with a block should not be
mixed with a single-statement else clause, or vice versa.

Bad:

if Something then
DoThis

else begin
DoThat;
AndThisOtherThing;

end;

Better:
if Something then begin
DoThis
end
else begin
DoThat;
AndThisOtherThing;
end;
The else should always start on a new line, never follow theend or the first statement.

If an if, else, for, while or similar statement doesnot uses a begin/end block, the then or do keyword should always be followed by a linebreak and the
following statement should be indented in a new line.

if Something then exit;
Better:

if Something then
exit;

Statements with a begin/end block, should never be nested inside statements where thebegin/end block, was omitted.
Bad:
if Something then
if SomethingElse then
for a in list do begin
end;
Better:
if Something then begin
if SomethingElse then begin
for a in list do begin
end;
end;
end;

Spacing

Consistent spacing should be used throughout all code in a file.

Types spanning more than a single line should be preceded and succeeded by a single empty line, to separate them from their siblings. However,
there should be no empty line between the type keyword and the first type that follows it.

Single-line types (e.g., aliases, short enums, etc) should be in a single block without spacing, and the types may be grouped logically together (e.g.,
several related enums) with an empty line in between them.

Inside a Class (or Record) declaration, members should be spaced consistently. Single-line members (such as Properties, Fields, Events, or Methods
w/o inline implementation) may be grouped logically, with individual groups separated by a single line.

Methods, constructors, or Properties that span multiple lines (and/or include an inline implementation) should be separated from each other by a
single empty line; even if they are the first, last, or only member in the current type or visibility block.

Groups of members (e.g., several methods relating to a single feature) may be visually separated with a single comment line//" or three comment
lines.

Namespace and Uses

In Oxygene, all Types (and Globals) are contained in a namespace. You can think of a namespace as a longer version of a name, that helps group
related types together, and to avoid name ambiguity between types with the same name (but in different namespaces).

A type"s full name is its namespace, followed by a dot, followed by the type'sshort name. The namespace itself may contain additional dots, to
indicated a nested hierarchy of namespaces:

MyCompany.AHelperClass
MyCompany.MyProject.SomeClass

Here, both "MyCompany" and "MyCompany.MyProject" are (separate and distinguished) namespaces. And AHelperClass" and "SomeClass" are the short
names of two classes defined therein.

It is common to use a company or individual's name as the root portion of namespaces for custom code, to (virtually) eliminate the chance of overlap
with code written by other people. For example, all RemObjects code uses namespaces starting with "RemObjects."; that is followed by the name of the
product, e.g. "RemObjects.Elements.", "RemObjects.DataAbstract.", and so forth.

Declaring A Namespace

In Oxygene every source file starts with the namespace keyword, followed by the name of the namespace that everything else contained in the file be
put into (optionally, this name can be omitted, and type will be generated namespace-less. But this is very rarely done, and discouraged).

namespace MyCompany.MyProject;

end.
This declaration affects two things:

1. By default, all types declared in the file will become part of this namespace.
2. All types from this namespace — no matter where they are defined — will be "in scope" for the file.

What does this mean, exactly? Let's have a closer look.
1. By default, all types declared in the file will become part of this namespace. This means that if we define a type as follows:
namespace MyCompany.MyProject

type

MyClass = class

end;
then the MyClass class will automatically be considered part of theMyCompany.MyProject namespace. Its so-called *full name will this be
"MyCompany.MyProject.MyClass". And this full name is how the class can be referred to everywhere.

2. All types from this namespace will be "in scope" for the file. This means that if we add a second (or more) files to our project and also begin
it with namespace MyCompany.MyProject, these files will be part of the same namespace, and all types from that namespace will be in scope in all the files
(no matter which file they were declared in). As such, we can refer to the above class simply as MyClass — because it is in the same namespace.

One can add as many files to a project as needed and theycan all share the same namespace. In most (smallish) projects that only have a single
namespace, there is no need to worry about adding namespaces to the uses clause (more on that below), just to access classes from within the
project's code base. All types are automatically in scope in all source files (of the same namespace).

Of course, while it is common for small to medium projects to just use a single namespace, it is also common to declare different namespaces across a
project in order to better partition parts of the project — for example one could have a MyCompany.MyProject namespace for the bulk of a project, but a
MyCompany.MyProject.MySubSystem namespace for a certain sub-system of the project.

Regardless of namespace, all types declared in a project will be available all throughout the project (unless they are marked foanit level visibility
only) by their full name, and all types marked as public will also be available outside of the project (i.e. when you are creating a library that will be
referenced from other projects).

Code in the MyCompany.MyProject namespace could refer to a type from the sub-system simply by using it's full name:"

var x := new SomeClassFromTheMainNamespace(); // no need to specify the full name
var y := new MyCompany.MyProject.MySubSystem.SubSytemClass();

Uses Clauses

Of course, it would become cumbersome to always refer to types from other namespaces using their full name - especially if the same type, or many
types from the sanem namespace(s) are used frequently through-out a source file.

By providing a uses clause with a list of namespaces at the top of the file, these additional namespaces can be brought "into scope" as well, so that
anything declared in them can now also be accessed using the short name.

namespace MyCompany.MyProject;

uses
MyCompany.MyProject.MySubSystem;

var y := new SubSytemClass(); // MyCompany.MyProject.MySubSystem is now in scope!

A uses clause can list one or more namespaces (separated by comma). Alternatively where convenient, multipleuses clauses can be provided, each
terminated by a semicolon. This is especially helpful when using {$IFDEF}s:

namespace MyCompany.MyProject;

uses
CoreFoundation,
Foundation;

{$IF MACOS}
uses

AppKit;
{$ENDIF}

Resolving Ambiguities

If more than one namespace in scope declare a type of the same (short) name, using that name will refer the one in the namespace that is most
towards the end of the uses clause. Of course you can still use the full type name, to be sure, or to refer to one of the other types of the same name:

namespace MyCompany.MyProject;
uses

MyCompany.MyProject.MySubSystemA,
MyCompany.MyProject.MySubSystemB,

var y := new SubSytemClass(); // comes from MyCompany.MyProject.MySubSystemB
var z := new MyCompany.MyProject.MySubSystemA.SubSytemClass(); // explicitly use the type from MySubSystemB

WildCards

In addition to listing individual namespaces, theuses clause also allows the asterisk character as a wildcard, to include a namespace and all its sub-
namespaces. For example, uses MyCompany.MyProject.* would add MyCompany.MyProject.SubSystemA and all the rest to the scope, including recursive sub-
namespaces.

namespace MyCompany.MyProject;

uses
MyCompany.MyProject.*;

Standard Namespaces

Certain System namespaces will be in scope by default and do not manually need to be listed in the uses clause for their types to be accessible by
their short name.

o The RemObjects.Elements.System namespace contains compiler-intrinsic types, such asInteger, System Functions and other elements, and is always
first in scope.

e On .NET, the System namespace contains many core classes, such asString and Object, and is always second in scope.
¢ On Java, thejava.lang namespaces contain many core classes, such asString and Object, and are always second in scope.
e On Cocoa, the rtl.* namespace contains the C runtime library, core types and many core C-based APIs and is always second in scope.

(On Island, all standard types are in the above-mentionedRemObjects.Elements.System)

Project-Wide Default Uses Clauses

In addition, you can specify a list of namespaces be in scope for all files via the "Default Uses Clause'Project Setting. Any namespaces in that list will
be in scope before those listed in an individual source file'suses clause (in alphabetical order, with RemObjects.Elements.RTL, of present, last).

The unit Keyword

For backwards compatibility with Delphi, Oxygene allows the unit keyword to be used instead ofnamespace. Note that even when using that keyword,
the following identifier still specifies the namespace for that file, and all the above discussion still applies.

Just as with namespace, the identifier does not have to match or correspond to the file name, and multiple (or even all) files in the project can (and
typically will) use the same namespace.

See Also
o Global Access (:) Operator

Types

Types are the fundamental building blocks of the Oxygene language.
There are three broad categories of types:

« Predefined Simple Types are small and atomic types that are built into the language to represent the simplest of data: numbers, booleans,
strings, and the like.

o Custom Types are types not defined by the language, but by yourself or provided by base libraries or frameworks. Where standard types are
universal in application, custom types usually serve a specific purpose.

Classes

Records

Interfaces

Enums

Blocks (a.k.a. Delegates)

o o o o o

 Modified Types are defined by the language itself, and extend or modify the behavior of a regular type, or form complex combinations, such as
arrays, sequences, tuples or pointers of a given other type.

o Arrays

o Seqguences

o Ranges

o Tuples

o Pointer Types

o Nullable and Non-Nullable Types
o Future Types

« Anonymous Types are custom types (Classes or Records) that are instantiated on the fly without being explicitly declared or given a name.
Oxygene also has support for declaring types in special ways:

o Generic Types are classes (or records and interfaces) where one or more of the other types that the class interacts with (for example to receive
or return as a parameter from methods) is not well-defined, but kept generic. This allows for the class to be implemented in a fashion that it can
work with or contain different type parameters. Only when a generic type is used, a concrete type is specified.

e Partial Types are regular types that are declared and implemented across multiple source files - commonly to keep a large class easier to
maintain, or because one part of the class is generated by a tool.

e Mapped Types allow you to provide the definition of a type that will not exist at runtime, but merely map to a different, already existing type.

e Type Extensions can expand an existing type with new methods or properties (but not new data), even if that type was originally declared in an
external library.

o Type Aliases can give a new name to an existing type.

Type Declarations

Custom Types and Aliases to existing types can be declared in theinterface or implementation section of any source file, after atype keyword.

Each type declaration starts with the type's name, followed by an equal sign &) and followed by optional Type Modifiers, which can also include a
Visibility Lebel, followed by the details of the type declaration as specified in the individual custom type topics referenced above.

type
MyClass = sealed class
end;

Mylnteger = public type Integer;

In the above example, MyClass ands Myinteger are the type names. They are followed by the equal sign, and thesealed and public type modifiers,
respectively. Finally class ... end and Integer are the type declaration itself (a Class declaration and anAlias, in this case).

Type References

While Type Declarations, covered above, introduce anew type name, the most common interaction with types is to reference existing ones.

Most types, including Simple Types and Custom Types, are referenced using simply their name - either their short name, or their fully qualified name
including the Namespace.

var x: SomeClass; // Variable x is declared referencing the SomeClass type by name.

By contrast, Modified Types are referenced using a particular syntax specific to the type, such as thearray of, sequence of or nullable keywords, often
combined with a type name.

var x: array of SomeRecord; // Variable x is as an *array* of the type referred to by name.
var y: nullable Integer; // Variable x is as a *nullable* version of the name's simple type.

On the Cocoa platform, type references can be prefixed with Storage Modifiers to determine how they interact withARC.

o Storage Modifiers

On the Island-based platform, type references can be prefixed with a Life-Time Strategy Modifier to determine how their lifetime is managed (although
doing so explicitly is rarely needed). Storage Modifiers, as discussed above, are also supported when working with Cocoa or Swift objects Cocoa
project.

e Life-Time Strategies
e Storage Modifiers

More on Type Names

Every named type (Simple Types and Custom Types) in Oxygene can be referred to either by its short name (e.g.MyClass), or what is called a fully
qualified name that includes a full namespace (e.g. MyCompany.MyProject.MyClass).

When declaring types with a simple name, the type will automatically be placed within the namespace that is declared at the top of the file alongside
the namespace keyword. Alternatively, a fully qualified name can be provided in the declaration to override the namespace.

namespace MyCompany.MyProject
interface
type
MyClass = class // full name will be MyCompany.MyProject.MyClass

end;

MyCompany.OtherProject.OtherClass = class // full name will be MyCompany.OtherProject.OtherClass
end;

You can read more about this in the Namespaces topic.

See Also

¢ Namespaces

Predefined Simple Types

Like most programming languages, Oxygene defines a set of basic types that make up the core language, cover simple and atomic data types (such as
numbers and characters) and form the base for more advanced types you define yourself or link in from libraries.

Integers

Oxygene provides integer types in 4 sizes, from 8-bit to 64-bit, both signed and unsigned. Refer to thelntegers topic in the APl Reference for more
details.

Floating Points

Two floating point types provide storage of fractional values, with single and double precision. TheFloats section in the APl Reference covers these in
more depth.

Boolean

A boolean is a simple value type that can hold one of two values +rue or false. See Boolean for details.

Strings and Characters

Individual characters can be stored in theChar type, while the String class provides support for strings of characters. Both hold 16-bit UTF-16 entities.

Object

Object is the implied root class of allClass Types defined in Oxygene and the other Elements languages. On .NET and Java (and in a limited degree on

Cocoa and Island), it is also the root of all other types, through a mechanism called Boxing). Visit the Object topic for more details.
Dynamic

The dynamic type can be used to work with objects whose API is not known at compile time. It can be used as a placeholder type for a field, variable or
parameter that can hold any type, at runtime. Different than an Object reference, which needs to be cast to a more concrete type for useful work, a
dynamic reference allows any imaginable calls to be made on it, without enforcing any compile times checks to see whether it is valid. The compiler will
generate code that tries to dispatch the call dynamically, failing at runtime if a call is invalid.

Custom Types

Custom Types are types not defined by the language, but by yourself or provided by base libraries or frameworks. Where standard types are universal
in application, custom types usually serve a specific purpose.

Classes

Records

Interfaces

Enums

Blocks (a.k.a. Delegates) and Function Pointers

e o o o o

Classes

A class is a data structure that may contain data members Constants, Fields and Properties, as well as actions that work with that data Methods).

Classes take part in a hierarchy of types and candescend from each other to form that hierarchy (more on thatbelow). An instance of a class is
commonly referred to as an "object".

A class type is declared using the class keyword, followed by zero or more member declarations, and closed off with theend keyword. Optionally, a
base class and/or a list of one or more interfaces implemented by the class can be provided in parenthesis behind the class keyword:

type
MyClass = public class(Object, IMyInterface)
private
fName: String;
fValue: Integer;
public
property Name: String read fName;
property Value: Integer read fValue;
end;

Like all custom types, classes can benested in other types with the nested in syntax.

Members

Classes can contain Type Members, including Fields, Properties and even Methods. Also like in classes, the members can be grouped inVisibility
Sections.

Invariants

Classes can define Invariants to help ensure a consistent state. Invariants are boolean expressions that will automatically be enforced by the compiler
every time a method or property accessor finishes.

Nested Types

Classes can also define Nested Types. Nested types are like regular custom types, except they are considered part of the class and theiwisibility can
be scoped as granular as all class Members.

Nested types are declared using the nested in syntax, and (outside of the containing class) are referred to in the same way as static class members
would - prefixed with the name of the class, and dot.

Refer to the Nested Types topic for more details.

Polymorphism

As hinted above, classes are part of a classhierarchy, where each class (except the root) has an ancestor class that it descends from and extends. You
can think of this hierarchy as a tree, with a common root (Object).

Classes can be treated polymorphically. That means an object (a concrete instance of a class) can be treated the same as any any of its base classes.
This allows code to be written that can work with a base class (or even Object itself), and it can be applied to any descendant of the same class, as well.

Individual members of a class can bevirtual, which means that descendant classes canoverride their implementation to provide more specific
behavior. When code working with a common base class accesses virtual members, at runtime execution is automatically passed to the
implementation for the concrete instance.

For example, code could be written for a list ofPerson classes, which, at runtime, includes various concretesubclasses or persons, such as Employee,
Manager, FamilyMember or the like. The code has access to all (visible) members declared onPerson, but might end up transparently calling more specific
implementations of these members provided by Employee, Manager or FamilyMember.

Please refer to the Polymorphism topic in the Concepts section, for details.
Abstract Classes

A class can be marked with the abstract Modifier, to indicate that it is an abstract base class. Abstract classes cannot be instantiated, and they may
(but don't have to) contain abstract Members - that is, members that have beendefined on the class, but not implemented.

Descendants from an abstract classes class can become non-abstract, if they provide overriden implementations for all abstract members.
Consider a class hierarchy of vehicles, where the base classVenicle can represent any kind of vehicle, but not a concrete type. It might provide an

abstract Drive method, but no implementation (since there is no one way to drive "any vehicle"). It makes no sense to create an instance of dehicle.
Concrete subclasses such as Car, Train and Bike could provide implementations for the Drive method.

Yet, even though Venhicle is abstract, code can be written that knows how to callbrive on any vehicle.

Again, please refer to the Polymorphism topic in the Concepts section, for details.

Sealed Classes

A class can be marked with the sealed Modifier, to prevent further subclassing.

Extension Classes

Extension Classes can add properties, methods, operators and events to an existing type (but not add anything that requires storage, like fields,
events or stored properties). These become available to callers if this type is in scope for the caller. The first type in the ancestor defines which type
gets extended; optional interfaces can be used to add/implement as interfaces allowing the type to be compatible with that interface.

Read more about Extension Classes here.
Type Visibility
The visibility of a class type can be controlled by applying aVisibility Modifier on the declaration. The default visibility isassembly.

Other Modifiers

A number of other Type Modifiers can be applied to classes:

abstract Forces the class to be abstract; see above.

extension Makes this an extension class; see above andExtensions.

mapped Makes this a mapped class; see Mapped Types.

partial Partial can be used to spread a type over several files in the same project. All parts must have this modifier then.

readonly Makes this class readonly. All fields in it will be readonly and can only be set by a constructor and not modified afterwards.
static Static classes are classes with only static members. The class modifier is implied on all members.

e o o o o o

See Also

Type Members

Polymorphism

Nested Types

Records in Oxygene

Value Types vs. Reference Types

e o o o o

Records

Records (also called "Structures" or "Structs", in many other programming languages) are a lot likeClasses except for two crucial differences:
e Records are value types, and stored on the stack, while classes are reference types, and stored in global memory.
e While they can have an ancestry hierarchy (i.e. a record type can decent from and extend another record), they do not support polymorphism,
e.g., overriding virtual methods.
When using a record type, the value is stored on the stack (or when defined inside a different type, it is stored inline within the memory space of that
type). Assigning a record from one variable to another creates a copy of the record, and making changes to on copy does not affect the other. For this
reason, records are usually used to hold a small number of related values.

See Value Types vs. Reference Types) for more on stack- vs heap-baswed types.
Platform Considerations

Records do not support polymorphism, but they can implementedinterfaces on the .NET, Java and Island platforms (but, for technical limitations, not
on Cocoa).

On .NET, a StructLayout Aspect can be used to change the size and alignment of a structure, which is useful when used in combination witlP/Invoke
calls to native platform APIs. Similarly, the FieldOffset Aspect can be used to set the offset of individual fields within the record.

A record type is declared using therecord keyword, followed by zero or more member declaratins, and closed off with theend keyword. An optional
ancestor and/or a list of one of more interfaces to implement can be provided in parenthesis behind the record keyword:

type
Color = public record(IColor)
public
R, G, B, A: Byte;
end;

Like all custom types, records can benested in other types with nested in syntax.

Note: Oxygene records are not to be confused with therecord types introduced in C# 9 and Mercury, which add special logic to class (or struct).
Oxygene records are the equivalent of a simplestruct in C# or Swift, or aStructure in Mercury.

Members

Like Classes, records can contain Type Members, including Fields, Properties and even Methods. Also like in classes, the members can be grouped in
Visibility Sections

Packed Records

By default in-memory layout of a record's individual fields is optimized for fast access first, and memory efficiency second. This means that additional
padding might be added to make sure Integers and pointers align at 4 or 8-byte boundaries, and the in-memory order of fields might be rearranged, as
well.

When a record is marked as packed with thepacked directive (or the cross-language Packed Aspect), this will not happen, and the records memory
layout will be exactly as specified.

Use packed records when the memory layout matters - for example when reading binary data from disk or the network and accessing it as a record, or
when sharing records in-memory with code compiled from non-Elements languages, such as C ort Delphi.

Cocoa and Island Only

Packed records are only supported onCocoa and the native Island-backed platforms (Windows, Linux, Android NDK and WebAssembly. On .NET and
ava, the keyword will be ignored. The Packed aspect is available on theCocoa and Island platforms only.

Invariants

Records can define Invariants to help ensure a consistent state. Invariants are boolean expressions that will automatically be enforced by the compiler.

Note that invariants can only be effective for non-public fields, as access to public fields would bypass them. This makes invariants less useful for most
typical records rthan they are for Classes.

Nested Types

Records can also defineNested Types. Nested types are like regular custom types, except they are considered part of the record and theiwisibility
can be scoped as granular as all class Members.

Refer to the Nested Types topic for more details.
Extension Records

Like Extension Classes, Extension Records can add properties, methods, operators and events to an existing type (but not add anything that requires
storage, like fields, events or stored properties). These become available to callers if this type is in scope for the caller. The first type in the ancestor
defines which type gets extended; optional interfaces can be used to add/implement as interfaces allowing the type to be compatible with that
interface.

Read more about Extension Records here.

Type Visibility
The visibility of a record type can be controlled by applying aVisibility Modifier on the declaration. The default visibility isassembly.

Other Modifiers

A number of other Type Modifiers can be applied to records:

extension Makes this an extension record; see Extensions.

mapped Makes this a mapped record; see Mapped Types.

partial Partial can be used to spread a type over several files in the same project. All parts must have this modifier then.

readonly Makes this record readonly. All fields in it will be readonly and can only be set by a constructor and not modified afterwards.
static Static records are records with only static members.

packed Packed records do not align their members by round offsets. Ignored on.NET and Java

e o o o o o

See Also

Type Members

Nested Types

Classes

Value Types vs. Reference Types
StructlLayout and FieldOffset Aspects
Packed Aspect

P/Invoke

e o o o o o o

Interfaces

Interfaces provide an abstract definition of one or more type members Methods, Properties or Events) that other types may opt to implement. You can
think of them as type contract that a type promises to provide functionality for.

Many types can implement the same interface, regardless of whether they share a common ancestry in their inheritance hierarchy, and all types
implementing the interface can then be interacted with by the same code, without the code having to be aware of the actual concrete types.

Any type opting to implement an interface must provide an implementation forall members of the interface (except for those declaredoptional, a
feature available only on Cocoa objects). All interface members are implied to be public, and naisibility sections are allowed (with the exception of
Private Interface Members, discussed below).

By convention, and to provide distinction from concrete types, interface names start with an uppercase followed by a PascalCased name. But this is not
a rule that is compiler-enforced. On Java, system-provided interfaces do not follow this convention.

An interface type is declared using theinterface keyword, followed by zero or more member declarations, and closed off with theend keyword.
Optionally, one or more base interfaces can be provided in parenthesis behind the interface keyword:

type
IMyInterface = public interface
method DoSomething;
end;

MyClass = public class(IMyInterface)
public

method DoSomething; ///
end;

var x: IMyInterface;
x.DoSomething(; // we don't know the actual type of x, only that it implements IMyInterface

Interfaces Members are limited to

Methods (including lterators)
Properties
Events

L]
L]
(]
e Constants

Like all custom types, interfaces can benested in other types with nested in syntax.

Default Implementations

Interfaces can optionally choose to provide a default implementation for some of the methods they define. If a default implementation is provided,
types implementing the interface may choose not to provide an implementation themselves, and will in that case "inherit" the default implementation.

This is often helpful for interface methods that would be similar for most implementations. Consider thdLogger interface example below. Most
concrete implementations would only need to implement the first method to emit the log string to various mediums. The second method is handy to
have for callers of the interface, but it would be cumbersome having to re-implement it for each logger.

type

ILogger = public soft interface
method Log(alnfo: String);
method Log(aFormat: String; params aParameters: array of Object);
begin

Log(String.Format(aFormat, aParameters));

end;

end;

Private Interface Members

As part of default implementations, interfaces can also defineprivate helper members. These members must provide an implementation; they do not
become part of the official interface contract, and are only available from other methods implemented in the same interface. Consider:

type

ILogger = public soft interface

public
method Log(alnfo: String);
method Log(aFormat: String; params aParameters: array of Object);
begin

Log(CustomFormat(aFormat, aParameters));

end;

private

method CustomFormat(aFormat: String; params aParameters: array of Object): String;
begin

end;

end;

Optional Members (Cocoa)

On the Cocoa platform, interface members can be marked as optional with theoptional keyword directive. Optional members do not have to (but may)
be implemented by classes conforming to the interface. Of course, code calling into such optional members must take care to ensure they are
implemented by the concrete instance, at runtime - usually by calling the respondsToSelector() method on Cocoa's baseObject.

type
IFoo = public interface
method One;
method Two; optional;
end;

Soft Interfaces

Interfaces can be marked assoft and suitable for automatic Duck Typing, using the soft modifier keyword. You can read more about Soft Interfaces, in
all Elements languages, here.
type

ISoftDuck = public soft interface

method Quack;
end;

Combined Interfaces

A Type Alias can combine two or more interfaces into a new interface type that combines both:

type
ICodable = IEncodable and IDecodable;

See the Combined Interfaces topic for more details
Type Visibility
The visibility of an interface type can be controlled by applying aVisibility Modifier on the declaration. The default visibility isassembly.
Other Modifiers
Only one Type Modifier can be applied to interfaces:
* soft marks the interface as soft (see above)
See Also
Optional attribute

Softinterface attribute

Duck Typing
Type Alias and Combined Interfaces

Enums

An enum type, short for enumeration, is a type that represents a number of distinct named values, each of which can optionally be represented by a
specific numerical value. An instance of an enum represents a single of the enum's values.

Flags are a special sub-type of enums where each value is represented by a separate bit in the underlying storage, allowing for a flag instance to
represent a single value or a combination of two or more values, usingbitwise or.

An enum type is declared with theenum or flag keyword, followed by one or more value names in parentheses:

type

Color = public enum(
Red, //implied O
Green, // implied 1
Blue //implied 2
)

Number = public enum
(

One =1,

Two = 2,

Three = 3
) of Word;

State = public flags

(

IsVisible, // implied 1
IsSelected, // implied 2
IsHovered //implied 4
)

Each enum value can be assigned to a specific numerical representation. If no numerical representation is provided, the compiler will automatically
assign consecutive numbers, starting at 0 and counting up in increments of 1 for enum types, and starting at1 and shifting the bit to the left forflags
types.

If a numerical representation is provided for some values but not all, the compiler will use the fixed values where provided, and incrementefums) or
look for the next free higher bit (flags from there for subsequent values without explicit number).

By default, enums are stored at 32-bit numbers compatible with aUInt32 type. Optionally, a different integer storage type can be provided at the end
of the declaration, using the of keyword. This can be used to size the enum smaller (Byte or Word) or larger (Int64).

Type Visibility
The visibility of an enum type can be controlled by applying aVisibility Modifier on the declaration. The default visibility isassembly.

Other Modifiers

Other modifiers do not apply to enums.

Blocks

A block type, also referred to as a delegate type on.NET, defines a method pointer that can be used to hold a reference to aMethod or an Anonymous
Method. Blocks are a safe way to dynamically invoke methods with a specific signature on unrelated classes.

Different from regular Function Pointers on native platforms (more on those below), block instance captures not only the implementation of the
method in question, but also the Self pointer of the object instance that contains the method. This allows callsto blocks to execute in the context of a
specific object instance, and access that object's members.

A block type is declared using theblock keyword, followed by a regular Method signature. This signature can include parameters and a result type.

type
MyBlockl = public block(aParameter: Integer);
MyBlock2 = public block: String;
MyBlock3 = public block;

In addition to block, the delegate keyword can also be used to declare a block.

The two keywords are interchangeable, anddelegate is mainly supported for backwards compatibility. We discourage the use ofdelegate, because, while
commonly used on .NET, the term can be confusing with what the terminology "delegate" refers to many other platforms, especiallffocoa. We
recommend to use the block keyword, exclusively.

Creating Block References

A block reference can be created by simply assigning aMethod, Anonymous Method or Lambda Expression to a block variable.

To avoid ambiguity (e.g. as to whether tocall the method and use its result, or assign the method itself), the method reference can be prefixed with
the Address Of (@) Operator. But note that this is seldomly required, except in cases of ambiguity (e.g. if the method itself returns a compatible block),
ot to levarage type inference.

var x: MyBlockl := @MyClass.MyMethod; // use a method as block

var y: MyBlock2 := () -> "Hello"; // use a lambda as block
var z := method begin // use an anonymous method
DoSomething;
end;

Invoking a Block

Invoking a block reference is as easy as calling into the block as if it were a regular local method:

x(15);
var s: String := y();
z();

Note that different than in regularMethod Calls, parenthesis are required to call the block. This is to avoid ambiguity between calling or referencing
the block, e.g.:

vara:=y; //assignsthe same block as 'y to ‘a"
var b :=y(); // calls 'y and assigns the result to "a".

Function Pointers

Function Pointers are a type similar to blocks, but more limited. They can be declared using the same syntax, but with thenethod keyword instead of
block.

Different than blocks, function pointers donot capture a Self. As such, they can only refer to simple (global) functions, not to class methods.
Anonymous methods or lambdas can be used as function pointers, as long as they do not access the surrounding scope or self.

Inline Block Types

Inline block types are blocks defined in a type reference, they use the same syntax as regular blocks, but without a name. OnNET and Java, these
blocks must map to system-predefined generic delegates (System.Action*, and System.Func* on .NET and types in theCooper Base Library for Java).
Cocoa and Island support arbitrary inline blocks natively.

method DoSomething(aCallback: block(aStatus: String));
begin

/...

aCallBack("Done.");
end;

Type Visibility
The visibility of a block type can be controlled by applying aVisibility Modifier on the declaration. The default visibility isassembly.

Other Modifiers

Other modifiers do not apply to blocks.

Modified Types

Modified Types extend or modify the behavior of a regular type, to form more complex combinations, such as arrays, sequences, tuples or pointers of
a given other type.

For example, value types can normally not benil, but the nullable version of that same type can. And anarray can broaden what usually is a single copy
of a given type into a group of several items of the same type that can be worked on in bulk.

Modified Types are defined by the Oxygene language itself, and are usually not referred to by name (although onecan of course define anAlias to a
specific modified type), but with a special language syntax.

Arrays

Sequences

Sets

Tuples

Future Types

Ranges

Pointers

Nullable and Non-Nullable Types
Class References

e o o o 0o 0 0 o o

An array is a constant sized list of elements. An array type is expressed with the " “array of* keyword followed by the name of any validlype; an
optional size can be provided in square brackets. The lower bound of an array does not have to be 0.

var x: array of Integer; // an array of undetermined (as of yet) size

vary: array [0..9] of Integer; // an array fixed to 10 elements

var z: array [5..10] of Integer; // an array fixed to 6 elements, with a lower bound of 5.

Arrays can be made multidimensional, by providing more than one set of bounds.

var x: array[0..9, 0..9] of Integer; // 10x10 = 100 integers

var y: array[0.., 0..] of Integer; // an undetermined (but rectangular) number of integers
var z: array of array of Integer; // an undetermined (loose) number of integers

Static Arrays

It is worth noting that arrays with fixed specified bounds are automatically allocated by the compileron the stack as value types, and can be
immediately used. These are referred to as Static Arrays.

var x: array[0..9] of Integer; // these 10 integers now exist as space on the stack
X[3]:= 42; // so we can just set the one at index 3 to "42"

The same holds true for multi-dimensional arrays with fixed bounds. These are allocated as a monolithic block of memory, so essentiallyarray [0..99] of
Integer and array [0..9, 0..9] of Integer have the same memory representation. Merely the semantics of how the 100 individual items get accessed differs.

var y: array[0..9, 0..9] of Integer; // these 100 integers too exist as space on the stack
x[3,8] := 42; // so we can just set the one at index 3 to "42"

Platform Considerations

o Static arrays are reference types, on.NET and Java, and stored on the heap, while they are value types onCocoa and Island and stored on the
local stack.

Dynamic Arrays

Arrays without bounds (or with open bounds) are un-initializedreference types, and set tonil by default (because, after all, their actual size is not
known from the declaration). These are referred to as Dynamic Arrays.

To use, fill these arrays with values, a copy needs to be instantiated using thenew operator:

var x: array of Integers; // unknown number of Integers, for now
x := new Integer[20]; // so we need to allocate 20 of them in memory (indexed 0..19)
X[3] := 42; // *now* we can set the one at index 3 to "42"

var x: array [0.., 0..] of Integers; // unknown number of Integers, for now
X := new Integer[20,20]; // so we need to allocate 400 of them in memory (indexed 0..19/0..19)
x[3,8] := 42; // *now* we can set the one at index 3 to "42"

For loose multi-dimensional dynamic arrays, each level would need to be instantiated manually (since each level can, in theory, contain a different-
sized sub-array):

var x: array [0.., 0..] of Integers; // unknown number of Integers, for now

X := new array of Integer[50]; // we allocate 50 arrays for dimension one (indexed 0..49)
for i: Integer := 0 to 49 do

x[i] = new Integer[20]; // and for each, we allocate 20 integers — for a total of 50*20 = 1000
x[3,8] := 15; /I now we can set values

Dynamic arrays are always reference types.

Inline Arrays

Inline arrays are concept specific to arrays on the.NET platform. The inline Type Modifier ensures that memory for the arrays is allocated with the
stack space or the memory space of the containing Class or Record.

type
MyRecord = public record
public
Chars: inline array[0..255] of Byte;
end;

The above record's size would be 256 bytes, unlike a record with a regular array, which would be stored outside of the record. Inline arrays are
specially useful when working with P/Invoke to call native code.

.NET Only

The Inline Array syntax is available on the.NET platform only.

Inline arrays are considered "unsafe". In order to use them, the "Allow Unsafe Code"Compiler Option must be enabled, and anyMethods that deal with
them must be marked with the unsafe Member Modifier.

See Also

Sequence Types

Type Modifiers

Arrays as Elements Standard Types
unsafe Member Modifier

Allow Unsafe Code Compiler Option

e o o o o

Sequence Types

Sequences are a special type in the language and can be thought of as a collection of elements, similar to an array.

In contrast to arrays, sequences do not imply a specific form of data storage, but can represent any collection of elements that is accessible in a
specific order. This could be an array (and as a matter of fact, all arrays can be treated as a sequence) or a different data store, such as a linked list, a
binary tree or a custom collection implementation.

Sequences can also represent non-static data that is retrieved or generated on the fly when the sequence is enumerated. For example, you could
implement a sequence that calculates all digits of Pi, or retrieves RSS headlines downloaded from a server.

As a result, sequences are not a concrete type that can be instantiated - one cannot "new up a new sequence", because it would be undefined where
its data would come from. Instead, sequences are used as base types to consume data where the exact storage is unknown.

For example, a method could be written that prints out asequence of Integer to the console. That method could then be invoked withany number of
different types that adhere to the sequence protocol, no matter where those Integers come from. By contrast, if the method were declared to take an
Array or a generic List<Integer>, it would be much more restrictive.

Using Sequences

Sequence types are expressed with the sequence of keyword followed by a type name.
var Somelntegers: sequence of Integer;

The most common operation on a sequence is to iterate it using afor each Loop loop, a variant offor loop that executes a statement (or block of
statements) once for each item in the sequence:

for each i in Somelntegers do
writeLn(i);

It is also common to applyLINQ operations in form of afrom Expression to perform operations on a sequence, such as filtering or sorting.
var FewerSortedIntegers := from i in Somelntegers where i = 20 order by i;
for each i in FewerSortedIntegers do

writeLn(i);

In the above example, the sequence of Integers will be filtered to include only those values larger or equal to 20, and then sorted numerically.

Compatible Types

In addition to Array, most collection types on the various platforms, including theList<Integer> type in Elements RTL are compatible with sequences.
Sequences can easily be implemented using lterators or for Loop Expressions.

Parallel Sequences

Available only on .NET, parallel sequences are a special type of sequence that can be iterated in parallel in a multi-threaded environment with .NET's
parallelism APIs. It maps to the ParallelQuery<T> system type.

var data: parallel sequence of Integer;
data.ForEach(a -> DoSomethingParallelWith(a));

.NET Only

The Parallel Sequences are available on the.NET platform only.

Queryable Sequences

Available only on .NET only, queryable sequences are a special type of sequence whereLINQ expressions applied to the sequence will be compiled to
executable code, but converted into meta data that can be used to perform operations on the sequence at runtime.

For example, using LINQ to SQL orDA LINQ, a from expression on a sequence of database objects can be translated into SQL code that could perform
the operations on the back-end database. Rather than fetching an entire data table and then filtering it locally, the filtering can be done by the
database engine.

var AllUsers := rda.GetDataTable<Users>;
var NewUsers := from u in AllUsers where u.DateSignedUp > DateTime.Now.Add(-1);
for each u in NewUsers do

writeLn(u.Name);

In this case, the "where" clause would get translated to SQL to only fetch the most recent users from the database instead of all of them - potentially
saving a lot of network bandwidth and memory.

A queryable sequence maps to thelQueryable<T> system type.

.NET Only

The Queryable Sequences are available on the.NET platform only.

Asynchronous Sequences

Also available only on.NET only, asynchronous sequences (called asynchronous streams in C# parlance) are sequences that can be iterated
asynchronously using the a await for each Loop Statement.

var lltems: async sequence of String := ...;
await for each i in litems do

writeLn(el);
writeLn("Done");

Asynchronous Sequences are expressed by theasync sequence keyword, and map to thelAsyncSequence<T> platform type. They can easily be created by
implementing an Iterator with an async sequence of X result type.

.NET Only

The Asynchronous Sequences are available on the.NET platform only.

See Also

LINQ

From® Expressions

Array

List<Integer> in Elements RTL

Iterators

for Loop Expressions

await for each Loop Statements

Type Modifiers

Sequences as Elements Standard Types

® o o 0o 0 0 0o o o

Set Types

A set is a collection of ordinal values of the samelnteger or Enum type. The set type defines the range of potential values; for each instance of the set,
any number of individual items (from none to all of them) can be contained in the set. Each value can only be contained once.

A set type is expressed using theset of keywords, followed by a range of values.

type
DayOfTheWeek = public enum (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

var Weekend: set of DayOfTheWeek := [DayOfTheWeek.Sat, DayOfTheWeek.Subn];

if TodaysDay in Weekend then
PartyTime();

Sets can be comprised of Enum values (as shown above), or Integer values:

type
DaysOfTheMonth: set of 1..31;

var FirstFewPrimeNumbers: set of Integer :=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31];

Sets are limited to 64 individual possible values, ensuring they can be stored in arJInt64 value. Sets containing 32 or less items are stored in an
Uint32.

Operators

The following Operators are supported on sets:

Operator Meaning
+ Union of two sets:[a,b,e] + [c,e,fl = [a,b,c.e,f]
Difference of two sets:[a,b,c,d] - [a,c] = [b,d]
* Intersection: [a,b,e] * [c,e,f] = [e]
= Exact equal; only true if all elements are the same in both
= Not equal
< Subset, true if the right side has all elements the left set has, and more

Superset, true if the left side has all elements the right set has, and

more

= Subset, true if equal or if the right side has all elements the left set has
- Superset, true if equal or if the left side has all elements the right set
- has

in Check if an enum or integer is in a set:ain[a, b, c]

not in returns not (a in b).

Note that Oxygene's language level sets are not to be confused with Swift's higher-levelSet<T> struct.

See Also

e Enum Types
e in and not in Operators

Tuple Types

A tuple is a well-defined group of values of specific types that can be handled together as a single grouped value, and also be taken apart into their
individual values easily. Tuples provide a more lightweight way to group related values without the need of declaring, for example, an explicit Record
type.

A tuple type is expressed with thetuple of keywords, followed by a list of two or more types (since a tuple of just one value makes very little sense).
method ExtractValues(s: String): tuple of (String, Integer);
The method declared above would return a tuple consisting of aString and an Integer.

A tuple value can be constructed simply by providing a matching set of values surrounded by parentheses. The followingesult assignment would work
for the above method.

result := ("A String", 5);

Tuple values can be assigned in whole or as their individual parts, both when assigningfrom a tuple or to one:
var t: tuple of (String, Int);

var s: String := "Hello"

var i: Integer := 5;

t := (s, i); // assigning individual values to a tuple

var u :=t; // assigning one tuple to another

(s, i) := ExtractValues("Test"); // assigning a tuple back to individual elements

Extracting a tuple back to individual items can even be combined with avar Statement, to declare new variables for the items:

var t := ExtractValues("Test");
var (a, b) := ExtractValues("Test"); // assigning a tuple back to individual elements

Here, three new variables are declared. For the first callt is declared as new tuple variable, so far so unusual. For the second call though, two new
variables a and b are declared, and the tuple is automatically taken apart, so thata would hold the String value andb the Integer.

Tuples and Discardable

Tuple extraction can also be combined with a [Discardable] Expression(../Expressions/Discardable). If only some of the values of a tuple are of interest,
the nil keyword can be provided in place of the items that are not of interest, and the will be discarded.

var (FirstName, nil, Age) := GetFirstNameLastNameAndAge();

Here, assuming that GetFirstNameLastNameAndAge returns a tuple of three values of information about a person, but only two variables are declared, for
the FirstName and Age, the middle value of the tuple is simply discarded.

Accessing Individual Tuple Items

Instead of extracting the whole tuple, individual values inside a tuple can also be accessed directly, with théndexer Expression:

var Info := GetFirstNamelLastNameAndAge();
writeLn($"{Info[01} is {Info[2]" years old".)

While in syntax this access looks like an array access, the access to to each item of the tuple is strongly typed, sonfo[0] is treated as a String, and
Info[2] as an Integer, for this example. For this reason, a tuple can only be indexed with a constant index.

Named Tuples

Tuples can optionally be defined to provide names for their values. Either all or none of the values need to have a name, a tuple cannot be "partially
named". A named tuple can be initialized with a tuple literal with or without names.

var Person: tuple of (Name: String, Age: Integer);
Person := (Name := "Peter", Age := 25);
Person := ("Paul", 37);

In a named tuple, individual items can be accessed both via index as outlined above, and via name:
writeLn($"{Person.Name} is {Person[1]" years old".)
Named and unnamed tuples (and tuples with mismatched names) are assignment compatible, as long as the types of the tuple items matches.

var Person: tuple of (Name: String, Age: Integer);
var Person2: tuple of (String, Integer);

Person := Person2;

Person2 := Person;

See Also

o Discardable Expression

Future Types

A future is a strongly typed variable that represents a value that might or might not have been calculated yet, but is promised to be (made) available
when needed.

A future is expressed by thefuture keyword, followed by a type:
var count: future Integer;

Future values can be used interchangeably with their underlying type, including as parameters toMethod Calls or even in arithmetic or logical
Expressions. The first time the value of a future is accessed, execution will wait for the future's value to become available.

The futureAssigned() System Function can be used to check if a future itself is assigned or not (i.e. isil). Note that a future can be assigned, but still
have a determined value of nil, of course.

Synchronous and Asynchronous Futures

Future types can be synchronous or asynchronous. By default, futures are synchronous, and will be evaluated the first time they are used.

When futures are used in combination with an Async Expression, they become asynchronous, and will execute to determine their value on a
background thread. When an asynchronous future is first accessed, its value might or might not have been determined yet. If it has not, one of two
things can happen:

o |f execution of the future has already started, access will block the current thread and wait for that execution to finish and the value to become
available.
o |If execution of the future hasnot started yet, it will be executed inline within the current thread.

Both of these scenarios happen transparently to the calling code.

Futures and Exceptions

Any exception that occurs while calculating the future will be caught, cached, and re-thrown whenever the future's value is accessed.

Example

Consider the following snippet of pseudo code that calculates the Sum of values in a binary tree:

method ThreeNode.Sum: Integer;
begin

var | := Left.Sum;

var r := Right.Sum;

result := |+r;
end;

This code first calculates the Sum of the left part of the subtree, then that of the right one. Finally, the two values are combined using the operator.
Calculating the value of both I and r might take a relatively long time, yet the value ofi is not actually needed until the very last line of the method.
This is an ideal candidate for a future:

method ThreeNode.Sum: Integer;

begin
var |: future Integer := async Left.Sum;
var r: Integer := Right.Sum;
result := |+r;

end;

Instead of calculating the value ofl in place as before, | is now defined as a future Integer, declaring that the variable does not actually hold the value of
Left.Sum, but just the promise that, at some point in the future, it will. This first line of code will execute in virtually no time, and the method can move
on to calculating r, which is unchanged and will happen inline, as before.

Note how the value assigned tol has been changed to include theasync keyword, making it anasync expression that will be spawned in the
background. In fact, it's this use of the async keyword that makes the future useful in this case.

The result of anasync expression is always a future, so the code would behave the same without explicit type declarations:

method ThreeNode.Sum: Integer;

begin
var | := async Left.Sum; // | will become a future Integer
var r := Right.Sum; // r is still a regular Integer
result := |+r;

end;

The actual value of the future,l in this example, will not be accessed until it is used in code. In the code above, this happens on the last line of the
method, when I is used with the + operator to combine with withr.

When the value is accessed, one of three things can happen:

o If the future is already done executing in the background, its value will be available immediately, just as if it were a plain non-future type that is
being accessed.

o If the future isnot finished executing at that point, execution will hold and block the current thread until the future is done.

o If any exception occurred while executing the future in the background, that exception will be re-thrown as the future value is accessed.

Note how in the example above, the code does not need to worry about whether the value of the futuré has already been determined or not when
execution reaches the last line and the value is required. The code can simply treat | as if it were a regular Integer.

Type-Less Futures

Futures can also be type-less, which is also referred to as Void Futures. Such a type-less future does not represent &alue, but merely a certain action
that will be run in the background.

A type-less future can be called, like a statement, in order to wait for its action to be finished. But because a type-less future has no value, it cannot be
used as an expression, only as a statement.

var f := async begin // goes off and does a couple of things in the background
DoSomething();
DoSomethingElse();

end;

DoSomeMore(); // meanwhile, do more work on the current thread

(); // wait for the type-less future to finish, if it hasn't already.

var x := f; // Compiler error: f has no value.

As with typed futures, if any exception occurred in the background while executing the future, that exception will be re-thrown if and when the future
is being called into.

Non-Asynchronous Futures

While asynchronous futures are the most common use case, a future type in itself does not imply background execution - it merely implies a value that
may or may not exist, and will be made available when needed.

If a future is declared and initialized with an expression that is not aresync expression, the value will be calculated the first time it is accessed.
method ThreeNode.Sum: Integer;
begin

var valueA := SomeCostlyOperation();

var valueB := SomeOtherCostlyOperation();

...

if x > 10 then
result := SomeCostlyOperation + SomeOtherCostlyOperation; // SomeCostlyOperation will only
else // be calculated if we hit this line

result := SomeOtherCostlyOperation;

result := result*SomeOtherCostlyOperation; // in any case, SomeOtherCostlyOperation is only
end; // calculated once

A Future Executes only Once

Both typed and type-less futures will only execute a single time.
The value of a typed future may be accessed multiple times during the flow of execution; subsequent access will simply yield the value directly.
Similarly, the first time you call into a type-less future, execution will wait if needed; subsequent calls will be guaranteed to just return immediately.
method ThreeNode.WeirdSum: Integer;
begin

var | := async Left.Sum;

var r := Right.Sum;

result := |+r+l; // | will only be calculated once, even though it's being accessed twice
end;

See Also

e async Expressions
e futureAssigned() System Function

Range Types

A range is an Integer type that is limited to a range of specific values. It is expressed simply as a numerical start and end value, connected with two
dots in between:

var x: 0..100;

Internally, Range types are stored ase on of the regularinteger types supported by Oxygene. The compiler will automatically pick the best matching
type to fit the whole range (e.g. an Int64 if the range exceeds the scope of 32-bit, etc).

If the "Range Checks" Compiler Option is on, the compiler will also enforce range checks when assigning values from and to a range type variable.
Constant assignments will always be range-checked at compile time;

35; // ok
210; // compiler error

See Also

e Integer Types

Pointer Types

A pointer is a low-level reference to the in-memory address to data. Pointers can beaun-typed (so-called Void pointers) to generically refer to a location
in memory, or they can be typed and (ostensibly) refer to the location of a specific data type at that memory location.

In the latter case, a pointer can bedereferenced and used as if it were the underlying type.

A pointer is expressed by using the ~ character, followed by a type name. For un-typed pointers, theVoid type name is used, as in ~Void.

var a: Integer; // a regular Integer
var b: ~Integer; // pointer *to* an Integer

Creating Pointers

The Address Of (@) Operator can be used to get the address of an item as a pointer:

a:=15; //setato 15
b := @a; // make *b" a pointer to the address of ‘a"

Dereferencing Pointers

A pointer can be dereferenced in order to get back to the value it points to, by appending thePointer Dereference (~) Post-Fix Operator to it. The result
is an expression that can be used interchangeably with the underlying type of the pointer - for example, a deference ~Integer could be used in
expressions like any other Integer.

varx:=a+ b”"
b~ :=12; // also changes ‘a"!

Platform Considerations

Note that pointers are not supported on the [Java] Platform (/Platforms/Java) at all.

On .NET, pointers are available in a limited fashion, but they are considered "unsafe". In order to use them, the "Allow Unsafe CodeCompiler Option
must be enabled, and any Methods that deal with pointers must be marked with theunsafe Member Modifier.

Pointers are fully supported on Cocoa and Island.

See Also

unsafe Member Modifier

Allow Unsafe Code Compiler Option
Address-Off (@) Operator

Pointer Dereference (~) Operator

nil Expressions

o o o o o

Nullable & Non-Nullable Types

Oxygene allows to explicitly specify the nullability of values such as variables, fields, properties or method parameters. For brevity, we'll use the term
"variables" throughout this topic to refer to all four kinds of references.

Nullable variables may either contain a valid value or they may not — in the latter case they are considered to beil. Non-nullable variables must
always contain a value and cannot be nil.

In Oxygene (as in C# and Java), the default nullability of a variable is determined by its type. Fowalue types (records, enums and simple numeric
types), variables are assumed to be non-nullable by default, and always have a value (which might be 0, which is of course distinct fromnil). By
contrast, reference types (i.e. classes or interfaces) are considered nullable by default, andmay be nil.

Nullability of a type can be expressed by explicitly prefixing the type name with a modifier. A variable can be made explicitly nullable with theullable
keyword, or explicitly non-nullable with the not nullable keyword combination.

For example:

var il: Int32; // non-nullable by default
var bl: Button; // nullable by default
var i2: nullable Int32; // nullable

var b2: not nullable Button := new Button(); // not nullable, thus needs initialization

It is perfectly acceptable (and in many cases recommended) to apply what might appear to be redundant explicit nullability information, as it can help
both the compiler and the user of APIs to understand the intention of the code.

For example, even though Strings are reference types, and nullable by default, marking aMethod Parameter or a Method Result as nullable String can
express the intention that the method will accept or potentially return anil value.

Especially when working on platforms where much of the core libraries do currentlynot express this kind of information, and APIs refer to plain
reference types without indication whether nil values are acceptable or to be expected, this extra information can help make your own APIs more
robust and self-describing.

You can read more about this topic in more depth in theNullability topic in the Language Concepts section.
See Also

Value Types vs. Reference Types

Nullability in the Language Concepts section.
Non-Nullable Types in C#

Non-Nullable Types in Java

Non-Nullable Types in Mercury

Warn On Implicit Not-Nullable Cast Compiler option

e o o o o o

Class References

A class reference is a special meta type that can be used to refer to classes (not instances of them) within a certain subtree of the class hierarchy. This
allows to write code that can work polymorphically with classes - for example dynamically instantiate different subclasses or call virtual static
methods.

A class reference can be expressed by using theclass of keywords, followed by the name of aClass.

var IControlClass: class of Control;

IControlClass := Button;

A class reference variable can hold a reference to the base type it was defined for (in this exampleControl, as well as any subclass of it (e.g.Button)).
Assignment can be made by simply specifying the type name, or by using the result of the classof() System Function.

A valid class reference (i.e. one that is notnil, but references an actual type) can be used in many of the same scenarios that the type name itself can
be used. Most interestingly, it can be used in new Expressions, to instantiate instances of the referenced type dynamically.

This is very powerful, as it allows for code that can instantiate new types, without knowing the exact subclass that is being instantiated, at compile
time.

A class reference can also be used to call anyStatic Members of the type.

Of course, since a class reference is strongly-typed to reference a specifichase type, it can only provide access to constructors and static members
defined on the base type. For example, the above reference would allow calls to constructors and static members declared on Control, but not any new
members introduced by Button.

Virtual Constructors and Status Members

When working with class references, Oxygene provides the ability to haveConstructors, as well as any static Methods, Properties or Events be
Polymorphic by being marked virtual (or abstract) in a base class, andoverridden in descendant classes.

Polymorphism will work just as it does normally for class instances: at runtime, calls will be directed to the implementation most appropriate for the
current class reference. For example:

type
Control = public abstract class
public
property DescriptionForToolBox: String; static; abstract;
constructor(aWindow: Window); virtual;
end;

Button = public class(Control)
property DescriptionForToolBox: String read 'A Button Control'; static; abstract;
constructor(aWindow: Window); override;
end;
var ControlType: class of Control := Button;

writeLn(ControlType.DescriptionForToolBox); // prints *A Button Control®
var ¢ := new ControlType(SomeWindow); // creates a new button

Implementation Details

Class references in Oxygene are implemented via a meta class type.

Since emitting a meta class forevery type would be a big overhead, the compiler automatically decides whether a meta class is required for a given
class.

A meta class will be generated if

o the class (or one of its base classes) is used in a class reference type anywhere in the project
o the class (or one of its base classes) declares a virtual constructor or a virtual static member.

For this reason, class references can not be used for classes from external references (unless the external reference already provided the meta class).
In other words, class of cannot be used with, say, classes provided by the platform.

For custom solutions spread across multiple projects, if project A references project B, then project B can only useclass of with types from project A if a
class reference for them was declared or used in project A (or if the type has a virtual constructor or a virtual static member).

An easy way to do this is to simply declare aType Alias in the base project, for the root of the type hierarchy that should be enabled for class
references, eg:

type
Control = public abstract class
end;

ControlClass = public class of Control;

The type alias ensures thatControl, and all its subclasses, will be ready for use with class references (even if the rest of the project that declaregontrol
does not use class references.

Special Members on Meta Classes

Classes references implement a couple of helper methods

e Instance: class of ClassName — Holds the instance of this meta class.
e ActualType: &Type — returns the platform type for the class this meta class refers to fype on .NET, Java and Island, and Class on Cocoa).

Additionally, any class that a meta class was generated for will expose aGetMetaClass instance method that returns the meta class for a live instance.

See Also

e Constructors
e Static Members

e Polymorphism

e Type Aliases

e classOf() System Function

Anonymous Types

Anonymous Types are custom types (Classes Records or Interfaces) that are instantiated on the fly, without being explicitly declared or given a name
(hence, anonymous). This is done by combining the new keyword with class, record or interface instead of a concrete type name:

Anonymous Classes or Records

An anonymous classes or records declaration is followed by parentheses containing one or more Property Initializers, which for an anonymous class
function both to declare and initialize the property.

var x := new class(Name := "Peter", Age := 35);

The above code declares a new variablex which holds an instance of an unnamed class with two propertiesName, of type String and Age of type
Integer.

The class can then be used in normal fashion, accessing (or changing) the value of its properties, or doing further processing on it.
Variables initialized to an anonymous type instance are assignment compatible, if their parameter names and types match.
var x := new class(Name :

vary := new class(Name :
X:=y;

"Peter", Age := 35);
"Paul", Age := 28);

Anonymous types are most frequently used in combination with theselect clause of afrom Expression, to limit the sequence to a subset of fields or
combine data within each item of a sequence in new ways.

var INamesAndAges := from p in IPersons
select new class(Name := p.Name, Age := DateTime.Today-p.DateOfBirth);

Anonymous Interface Classes

Anonymous interfaces classes provide the implementation for one or more methods of aninterface. This usage pattern is very common on theAndroid
platform, where rather than .NET-style Events, controls usually are assigned a delegate object that implements a given interface in order to receive
callbacks when events happen - such as to react to the click of a button.

Anonymous interfaces classes allow to define such a class inline and implement one or more handler methods without having to implement the
interface on the containing class or providing a class who's connection to the surrounding code would need to be managed manually.

You can think of anonymous interface classes as an extension or a more sophisticated version oAnonymous Methods. In fact, an anonymous method
is considered the same as an anonymous interface class with just one method.

And just like anonymous methods, code inside an anonymous interface class has full access to the surrounding scope, including full access to the
containing class.

Anonymous interfaces are defined using the new interface keyword combo, and mjust include the name of the interface being implemented:
fButton.delegate := new interface IClickEvent(OnClick := method begin

// handle the click here
end);

See Also

e from Expressions
e Classes and Records
o Interfaces
L]

Anonymous Methods

1. Technically, the anonymous type may contain zero members, but that would not be very usefule

Generic Types

A Class, Record or Interface can be generic, if it operates on one or more types that are not specified in concrete when the type is defined.

Why Generics?

Generic types are best understood by comparing them to regular, non-generic types and their limitations. For example, one could implement a
"StringList" as a regular class that can contain a list of Strings. One could make that list as fancy as one likes, but it would always be limited to Strings
and only Strings. To have a list of, say, Integers, the entire list logic would need to be implemented a second time.

Alternatively, one could implement an "ObjectList" that could hold anyObject. Since Strings and Integers can both be objects, both could be stored in
this list. But now we're sacrificing type safety. Any given ObjectList instance might contain Strings, Integers, or indeed any other kind of object. At each
access, one would need to cast, and type check.

By contrast, a generic "List<T>" class can be written that holds an as-of-yet undefined type of object. The entire class can (and, indeed, must) be
implemented without ever knowing what type of objects will be in the list, only referring to them as T. But: When using the generic class for a concrete
purpose, it can be instantiated with a concrete type replacing T: as a List<String> or a List<Integer> for example.

Type Parameters

Any Class, Record or Interface type declaration can be made generic by applying one or moretype parameters to its name, enclosed in angle
brackets:

type
List<T> = public Class
end;

List<Key,Value> = public class
end;

The type parameters can be arbitrary identifiers. It is common to use short single-letter uppercase names such ag, U, v, to make the type parameters
stand out in the remainder of the code, but that is mere convention. Any valid identifier is allowed.

Once declared as part of the generic type's name, these type parameters become valid types that can be used throughout the declaration and
implementation, as if they were regular, well-known type names. For example they can be used as type for Method Parameters or Results, or as
variables inside a method body.

type

List<T> = public class
public
method Add(aNewltem: T);
property Items[alndex: Integer]: T;
end;

Of course, since little is know about whatT is, there are limitations to what the generic class can do with instances off in code. While some lists will
contain Strings, others might contain Integers - so it would not be safe to, for example, call a string-specific method on T.

This is where constraints come in.

Constraints

If a generic type needs more specific control over what subset of types are allowed for its generic parameters, it can declare one or moreonstraints,
using the where keyword.

Essentially, a constraint limits the generic class from being instantiated with a concrete type that does not fulfill the conditions.
There are five types of supported constraints:

e is TypeName — requires the concrete type to implement the specifiedlnterface or descend from the specified Class.
¢ is class — requires the concrete type to be aClass (i.e. disallows records or value types).

e is record — requires the concrete type to be aRecord or Value Type (i.e. disallows classes).

« is unmanaged — (.NET only) requires the concrete type to be a simple unmananaged- type.

¢ has constructor — requires the concrete type to have a parameter-less constructor.

Of course individual constraints can be combined. For example constraining the above list in two ways could give it additional capabilities:

type
List<T> = public class
where T is IComparable, T has constructor;

public
method New: T;
begin
result := new T; // made possible because of “where T has constructor’
Add(result);
end;

method Sort();
begin
... complex sorting code
if selffa].CompareTo(self[b]) then // made possible by “where T is IComparable’
Switch(a,b);
... more complex sorting code
end;

end;

The where T has constructor constraint allows the new list code to create new instances of whatever typeT is, at runtime. And the where T is IComparable
constraint allows it to call members of that interface on T (without cast, because T is now assured to implementiComparable).

Of course on the downside, the List<T> class is now more restricted and can no longer be used with types that donot adhere to these constraints.

Adding constraints is a fine balance between giving a generic class more flexibility, on the one hand, and limiting its scope on the other. One possible
solution for this is to declare additional constraints on an Extension, instead, as shown in the next section.

A single where clause may list multiple constrains, separated by comma. Alternatively. multiple where clauses, each terminated with a semicolon, are
also permissible.

type
List<T> = public class
where T is IComparable;
where T has constructor;

Constraints on Extensions

When declaring an Extension for a generic class, it is allowed to provide additional constraints that will applicable only on the extension members.

This keeps the original class free from being constrained, but limits the extension members to be available to those instances of the class that meet
the constraints. For example, one could make the List<T> from above more useful for strings:

List<T> = public class
where T is String;

public

method JoinedString(aSeparator: String): String;
begin
var sb := new StringBuilder();
for each s in self index i do begin
if i > 0 then
sb.Append(aSeparator);
sb.Append(s); // we know s is a String, now
end;
end;

end;

var x := List<String>;
var xy:= List<Button>;

x.JoinedString();
y.JoinedString(); // compiler error, no such member.

In this example, the new joinedString method would only be available onList<String>, as a list with any other type would not satisfy the constraint.

Co- and Contra-Variance

A generic Interface can be marked as either co- or contra-variant on a type parameter, by prefixing it with theut orin keyword, respectively:
IReadOnlyList<out T> = public interface
GetltemAt(alndex: Integer): T;
end;
IWriteOnlyList<in T> = public interface
SetltemAt(alndex: Integer; altem: T);
end;

A co-variant generic parameter (marked with out) makes a concrete type compatible withbase types of the type parameter. For example, a
IReadOnlyList<Button> can be assigned to alReadOnlyList<Object>.

This makes sense, because any Button is also anObject. Since the IReadOnlyList only uses the type T outgoing, as method results (orout Parameters), any
call to a list of Buttons can be assure to return anObject.

The reverse would not be case, if the originalList class were co-variant, on couldadd arbitrary Objects to a list of Buttons - and that would bebad.

By contrast, a contra-variant generic parameter (marked within) makes a concrete type compatible withdescendant types of the type parameter.
For example, a IWriteOnlyList<Object> can be assigned to alWriteOnlyList<Button>.

Once again, this makes sense, because IWriteOnlyList only uses the type T incoming, as method parameter. Because a IWriteOnlyList<Object> can hold any
object, it is perfectly safe to be treated as a IwriteOnlyList<Button> - the only thing that can ever happen through this interface is that buttons get added
to the list - and buttons are objects.

And again, the reverse would not be case. If the originalList class were contra-variant, one could retrieve arbitrary Objects from a List if Objects, from
code that expects to get buttons.

Co- and Contra-Variance is allowed only onlnterface types. Generic Classes or Records cannot be marked as variant.

.NET Only

Co- and Contra-Variance is supported on the.NET platform only.

Unconstrained Generics

By default, Generics defined on Oxygene are always constrained to be compatible with the defaultObject type (or any type that can be boxedinto an
Object).

On platforms that support more than one Object Model, the unconstrained keyword can be used to explicitly mark a generic as supportingall types of
object models. Note that this severely restricts what can be done with the elements without requiring explicit casts or use of the modelOf() system
function.

type

List<T> = public class
where T is unconstrained;

end;

See Also
e Classes, Records and Interfaces
e Extension
e in vs. out Method Parameters
e Method Results
e Type Casts and Type Checks

e Value Types vs Reference Types

1. In order to qualify as "unmanaged", a type must an Integer, Float, Char, Boolan, Decimal, Enum or Pointer type or a user-define®kecord where
each field satisfies same requirement. <

Partial Types

Partial types allow the declaration of Classes and Records to be splot into multiple parts and, potentially, multiple files within the same project.

A class or recored can be declared as partial simply by applying thepartial Type Modifider to it's declaration. Once done, multiple declarations for the
same type may exist (as long as they are all marked as partial), and will be combined into a single type when compiled.

For Classes, only a single base class can of course be specified Records, of course, have no ancestor). It is allowed either for all partial declarations to
declare the same base class, or for only one part to declare it. If different parts declare a different ancestor, compilation will fail.

All parts also must declare the sameVisibility and, of course, be within the sameNamespace (otherwise, they'd be unique, separate types).

It is entirely permissable for thepartial modifier to be present on a class that is declared with only one partial - for example in preparation for
additional parts ot be added later, or because the other parts are not used in the current project or configuration.

type
MyClass = public partial class(MyBaseClass)
public
method Test;
end;

type
MyClass = public partial class
public
method Test2;
end;

Partial Methods

Partial types can also declare partial Methods, which can be used to advertise the availability of a method in one part, andptionally provide an
implementation on the other part.

For this, one part must declare the partial method with both thepartial and the empty Member Modifiers and not provide an implementation. Optionally,
another part may re-declare the method with just the partial Member Modifier, and provide an implementation.

A method declared as such can be called from other pieces of code, like any other method. If only thempty part is provided, calls to the method
become a no-op, and have no effect. If an implementation is provided in another part, calls to the method will, of course, call that implementation.

type
MyClass = public partial class(MyBaseClass)
public
method Test;
begin
Test2;
end;
method TestHelper; partial; empty;
end;

type
MyClass = public partial class
public
method TestHelper; partial;
begin
DoSomething;
end;
end;

Partial methods are useful when one part of the class needs to refer to a method that might or might not be implemented in another part. For example,
the implementation for a partial method might be in a part that is conditionally compiled, say for Debug vs. Release, or for a particular platform.

Or one part might be machine-generated (such as the code-behind file for aWinForms or WPF form, and have calls that the developer might or might
not choose to provide in the user-edited part of the class.

Modifiers

A partial type is a Class or Record that is marked with the p[artial Type Modifier.

The Visibility modifier needs to match between all parts of the type, or has to be omitted from the other parts. In other words, of one part declared a
class as public.

See Also

Type Modifiders
Methods
WinForms

WPF

e o o o

Mapped Types

Mapped Types are a unique feature of the Elements compiler that let you create compatibility wrappers for types without ending up with classes that
contain the real type. The wrappers will be eliminated by the compiler and rewritten to use the type the mapping maps to.

Note: When working with Oxygene, you will most commonlyuse mapped types (for example as provided by theElements RTL cross-platform library).
Using mapped types is seamless, and they behave just like regular non-mapped types.

You will not often need toimplement mapped types yourself, but for when you do, Oxygene - like RemObjects C#, Swift and Java - provides a syntax
for implementing mapped types when needed, with the mapped keyword.

Please refer to the Mapped Types topic in the Language Concepts section for more details.

A mapped type can be aClass or a Record, and is declared like any other class or record, but with themapped to keywords following the declaration,
alongside of the type that is being mapped - also referred to as the "original type".

type
MyString = public class mapped to String
end;

Mapped Classes can optionally provide an ancestor, as long as that ancestor is either also an ancestor of the original class, or is in itself a mapped
class, mapped to an ancestor of or directly to the original class. Both mapped classes and mapped records can provide an optional list ofnterfaces
that they adhere to.

Members

Mapped types can define members such as Constants and Properties, as well as actions that work with that data Methods), just like regular classes
and records. However, because at runtime mapped classes are, well, mapped to a different, existing class, mapped types cannot add Fields, or
properties with implicit storage (which would require an implicit field to be added).

Inside the code of the members of a mapped class (method bodies, property getters and setters), a speciamapped Expression can be used to refer to
members of the original type, or the "self" of the original type.

type
MyString = public class mapped to String
property TwiceThelLength: Integer read mapped.Length*2;
end;

Without dereferencing via mapped, code inside a mapped class sees only the members defined on themapped class. Members of the original class are
available only through mapped. mapped can also be used standalone, to refer to the current instance as its original type.

You can think of mapped as equivalent to self - both refer to the same physical instance of the type, but they differ in as what type the class or record is
seen.

var x := self; // X" is a "MyString’

vary := mapped; // 'y’ is a String
if x = y then ... // but they are the same

Shortcut Mappings

For methods, oxygene supports a special syntax for direct one-to-one mappings of members, using themapped to Member Modifier:

type
MyString = public class mapped to String
method MakeUpper: Integer; mapped to ToUpper;
end;

Here, the MakeUpper method is mapped directly to theToUpper method of the underlying original class.

Note that while in this example the name of mapped and original member differ, it is also acceptable (and common) to map members with the same
name, in order to expose the original member on the mapped type, "as as".

type
MyString = public class mapped to String
method ToUpper: Integer; mapped to ToUpper;
end;

Constructors

Mapped types can provide Constructors that can be used to instantiate copies of the mapped type. Because instantiating a mapped type, ultimately,
must end up with instantiating a copy of the original type, constructors in mapped types have some additional capabilities.

In addition to deferring execution to other constructors using regularconstructor Expressions, constructors in mapped types are also allowed to
instantiate a copy via any other means (say by calling class factory methods), and returning an instance by assigning to result or calling exit.

constructor MyString(aChar: Char);
begin

result := aChar as String;
end;

It is also possible to use themapped Expression to defer to constructors of the original type. This works in symmetry with how theinherited constructor
Syntax works in "real" classes:
constructor MyObject;
begin
mapped constructor("Hello");
end;

Type Visibility

Just as with regular Classes and Records, the visibility of a mapped type can be controlled by applying aVisibility Modifier on the declaration. A
mapped type cannot be more visible than the underlying original type. The default visibility is assembly.

Other Modifiers

A mapped type is a Class or Record that is marked with the mapped to Type Modifier.

See Also

Mapped Types in the Language Concepts section
mapped to Member Modifier

L]
L]
e mapped Expression
e Elements RTL

Type Extensions

Type extensions can be used to expand an existing type with new methods or properties. They are similar t®artial Types in concept, with the
distinction that they can be applied to all available types, even those originally declared in external libraries or core platform frameworks.

Extensions are most commonly used to add custom helper methods, often specific to a given project or problem set, to a more general type provided
by the framework, or to correct perceived omissions from a basic type's API.

For example, a project might choose to extend thestring type with convenience methods for common string operations that the project needs, but that
are not provided by the actual implementation in the platform.

Extension declarations look like regularClass or Record declarations, except that theclass or record keyword is prefixed with the extension Type Modifier.
Extensions need to be given a unique name, and state the type they extend in parenthesis, in place of the ancestor. It is common (but not mandatory)
to use the original type's name, appended with the unique suffix.

type
String_Helpers = public extension class(String)
method NumberOfOcurrencesOfCharacter(aCharacter: Chat): Integer;
end;

Inside the implementation, the extended type instance can be referred to viaself, and all its members can be accessed without prefix, as if the
extension method was part of the original type. Note that extensions do not have access to private, protected or assembly and/or protected members.
Essentially they underlie the same access controls as any code that is not part of the original type itself.

method NSString_TrimHelpers.stringByTrimmingTrailingCharactersinSet(characterSet NSCharacterSet): NSString;
begin

var charBuffer: unichar[length];

self.getCharacters(charBuffer);

var i := length;

for i: Int32 := length downto 1 do begin

if not characterSet.characterlsMember(charBuffer[i-1]) then
break;

end;

result := self.substringWithRange(NSMakeRange(0, i));
end;

Extension types can declare both instances and static members. They can add methods and properties with getter/setter statements, but they cannot
add new data storage (such as fields, events, or properties with an implied field), because the underlying structure of the type being extended is fixed
and cannot be changed.

Extensible Types

Extensions can be defined forany named type, be it aClass, Record, Interface, Enum, Block or even anAlias to an otherwise unnamed type.

No matter which kind of type is being extended, the extension will always use theclass or record keyword.

See Also

e Extension Methods

Aliases

A type alias can give a new name to an existing type, whether that type is declared in the same project, or elsewhere.

Type aliases can serve many purposes. They can provide a short-hand for an otherwise more complex to write type (such adrray or a Tuple with a
specific configuration) or they can distinguish between different use cases of the same base type (such as declaring different, incompatible aliases to
Double refer to different units of measure.

Type aliases can be declared by simply following the equal sign with the name of another type, optionally preceded by aVisibility Level.

type
Number = public Integer; // "Number" now has the same meaning as "Integer"

Incompatible Type Aliases

A type alias can be marked to be deliberately incompatible with the original type (and other aliases to the same type) by applying theype Type
Modifier:

type
Celsius = type Double;
Farenheit = type Double;
var BoilingTemp: Celsius = 100.0;
var OvenTemperature: Fahrenheit := BoilingTemp; // this assignment will fail with an error.
You could even provide Custom Operators for the new incompatible types (as a global, or via anExtension that could handle conversions (where
applicable), so that you could then write

operator Explicit(C: Celsius): Fahrenheit;
begin

result := (C *9.0/5.0) + 32.0
end;

var OvenTemperature: Fahrenheit := Fahrenheit(BoilingTemp);

Combined Interfaces

A type alias can combine two or morelnterfaces into a new Interface type, using the and keyword:

type
ICodable = IEncodable and IDecodable;

To be compatible with the new combined interface type, a type must implementall the interfaces, and declaring a type to implement the combined
interface automatically marks it as implement (and requires it to implement) all the interfaces.

See Also

Type Modifier and Type Visibility Level
Custom Operators
Interfaces

Extensions

Globals

Although discouraged in a pure Object-Oriented environment, Oxygene lets you define globalmembers within a namespace that will be accessible
from any place where the namespace is in score, without a class prefix.

This is mostly useful to define and interact with global functions on theCocoa and Island platform where code must often interact with non-object-
oriented system APIs, but also available on .NET and Java.

Internally, Oxygene will create an implied static class called _Globals that contains these members.

Forward Declarations

Though not necessary in Oxygene, the compiler also allows forward declaration using theforward keyword. A forward declaration provides the signature
of a global method without providing the implementation; the implementation of the method can then be provided further down in the same file.

Forward declarations were necessary in legacy pascal compilers due to their single-pass nature, in order to allow two methods to call each other
without depending on method order within the file. With Oxygene, this is not necessary.

A forward declaration looks like a regular method declaration, with theforward Member Modifier.

Type Modifiers

Type Declarations can sport a range of modifiers that affect how the member works or is accessed.

Type Modifiers are provided after the = that separates the type's name from the declaration itself, and before the remainder of the declaration.

type
MyClass = public sealed Class
end;

Distance = public type Double;

The order of modifiers has no relevance, but note that combinations of modifiers that would be contradictory or non-sensible are not permitted.
Visibility Modifiers

Each type can be marked with an individualVisibility Level that controls where the type can be accessed. If no visibility level is specified, the default is
assembly, marking the type as available everywhere within the project, but not externally.

e unit — only accessible from within the same file
e assembly — only accessible from within this project
e public — accessible from everywhere

Please refer to the Member Visibility Level topic for a detailed description of visibility levels.
Example:

type
MyClass = public Class
end;

Other Modifiers

The following additional modifiers are supported for various types:

e abstract — (Classes only) marks the class as being abstract. Abstract classes are considered "incomplete", and cannot be instantiated at runtime.

Any class that contains abstract Members must be marked as such. Descendant classes must implement all abstract members in order to

become able to be instantiated.

extension — (Classes and Records only) marks the type to be anExtension Type.

inline — (Arrays only) marks the array to be inlined within the stack space of aRecord. See Inline Arrays for details.

parallel — (Sequences only) marks the sequence as parallel. SeeParallel Sequences for details.

partial — (Classes and Records only) marks the type to be aPartial Type.

queryable — (Sequences only) marks the sequence as queryable. SeeQueryable Sequences.

readonly — (Classes and Records only) makes all fields in the class or record readonly.

sealed — (Classes only) marks the class as sealed, meaning that it will not be allowed to declare further descendants.

soft — (Interfaces only) marks an interface to be aSoft Interfaces for use with Duck Typing.

static — (Classes and Records only) marks the type as static. A static type cannot be instantiated at runtime. AIMembers declared within the

type will automatically become static as well (whether explicitly marked as such with a Member Modifier or not).

e type — (Type Aliases only) marks the new type alias as a distinct type and "incompatible" with the original type. Values of the original type
cannot be assigned to variables of the new type, or vice versa, without explicit cast.

e o ® o 0o 0 o o o

Type Suffixes

Not strictly type modifiers:

e Mapped Classes or Records use the mapped to type suffix to indicate mapping to a different, existing type.
e Nested Types use the nested in type suffix to indicate that the type is considered a member of another type.

See Also

e Type Visibility Level
e Type Declarations

Type Visibility Levels

Any Type defined in Oxygene can have one of three visibility levels that controls where the type is accessible from.

Unless marked differently with one of the keywords below, all types haveassembly visibility - that is, they are accessible from within the same project
but not exported from library projects for external access.

e unit — only accessible from within the same file
e assembly — only accessible from within this project
e public — accessible from everywhere

Among others, the assembly and public visibility levels are also available for type members themselves.

Storage Modifiers (Cocoa)

On the Cocoa platform, which uses ARC rather than Garbage Collection for memory management, the three storage modifier keywords strong, weak and
unretained are available to control how object references are stored in local variables, fields or properties.

By default, all variables and fields arestrong - that means when an object is stored in the variable, its retain count is increased, and when a variable's
value gets overwritten, the retain count of the previously stored object gets reduced by one.

Read more about this topic in the Storage Modifiers topic in the Cocoa platform section.

var x: weak Button;

Cocoa Only

Storage Modifiers are relevant and available on theCocoa platform. They can optionally beignored on .NET, Java and Island, when Cross-Platform
Compatibility Mode is enabled.

See Also

Storage Modifiers in the Cocoa platform section
Automatic Reference Counting

L]

L]

e Retain Cycles
e Cocoa Platform
L]

Life-Time Strategies for Island

Life-Time Strategies (Island)

On the Island platform, type references can be prefixed with a Life-Time Strategy Modifier to determine how their lifetime is managed.

By default, each sub-platform defines its preferred life-time strategy, and having to override is rarely needed.

Read more about this topic in the Life-Time Strategies topic in theIsland platform section.

var x: lifetimestrategy(Manual) String;

Island Only

Life-Time Strategies are relevant and available on thelsland platform only.

See Also

e Storage Modifiers in the Cocoa platform
o Life-Time Strategies topic in the Island platform section.
¢ Island platform

Type Members

In Oxygene, Class or Record (and, to a more limited fashion, Interfaces) can contain various types ofmembers that define the type, its data and its
behavior.

Within the type declaration, which starts with theclass, record or interface keyword and ends with end, individual members can be declared, separated by
semicolons. Optionally, different Visibility Sections can be used to define which parts of the project have access to each member.

Bodies of members that contain code (such asMethods or Properties) can be provided in-line, directly following their declaration, or they can - in more
traditional Pascal style - be provided below the type declaration in a separate implementation section. Please refer to the Code File Structure topic for
more details on this.

type
MyClass = public class
private
var fName: String;
public

property Name: String read fName;

method DoSomething;
begin
DoSomeWork;
end;
end;

A type can define the following kinds of members:

Fields

Methods and lterators
Properties

Events

Constants
Constructors
Finalizers

Iterators

Custom Operators
Nested Types

® o o 0o 0 0 0 0 o o

You might also want to read up on:

Invariants

Mapped Members

Explicit Interface Implementations
Member Modifiers

Member Visibility Levels

e o o o o

Instance Members

By default, members of a class are specific to theinstance. This means if they provide storage (such asFields, Properties or Events), that storage is
separate for each instance of the class, and if they access storage (such as a Method that reads or writes the value of a field or property) they access
the storage of that instance.

Code for instance members has access to theself Expression which gives access to the current object instance that code is running on. All access to
the class's storage goes through this self reference (be it explicit, or implied).

type
MyClass = public class
private
var fName: String; // each instance of the class has its own copy of fName.

public
method DoSomething;
begin
fName := "Hello";
end;

end;

Static Members

Members can optionally be marked as static, using either the static Member Modifier or by being prefixed with theclass keyword.

For members that provide storage Fields, Properties or Events), only one copy isn provided for the class itself. Any code that accesses or changes the
data, be it in a static or an instance method, will see and change the same value.

Code for static members runs without the context of a specific instance. As such it has access to statically stored data, but cannot access any instance
members. Static members can still use the self Expression, but it will refer to the class, not to an instance.

type
MyClass = public class
private
var fName: String; // each instance of the class has its own copy of fName.

var fName2: String; static; // there's only one copy of fName2

public
method DoSomething?2; static;
begin
fName2 := "Hello";
// we can't access fName here!
end;
end;
See Also

e self Expressions

Fields

A field is a simple variable in aClass or Record that stores (part of) the type's state.

Fields can be defined at any place within the declaration of a class or record. To avoid ambiguity with other modifiers, thevar keyword can be used to
start an explicit field section, but it is not required.

type
MyClass = public class
private
fValue: String;
fNumberl, fNumber2, fNumber3: Integer;
method Foo;
var override: Boolean; // 'var' keeps 'override' from being ambiguous
end;
Each field can be declared as a name/type pair separated by a colon; multiple fields of the same type can also be declared as a comma-separated list,
without having to repeat the type name every time.

Initializers

Fields can be assigned an initial value right in their declaration by having the field declaration closed off with the= operator followed by an
expression.

var fName: String := 'Paul’;

Initialization is only supported for individually declared fields, not when multiple fields are declared with a comma-separated list. If the type of the
variable can be inferred from the initialization expression, the explicit type can be omitted:

var fName := 'Paul’; // String is inferred

Please also refer to the Constructors: Initializers topic for more detail on when and how fields get initialized.

Read-Only Fields

Fields can be marked with the readonly Member Modifier to become read-only.

Read-only fields can still be written to from anlnitializer or from the class's Constructors - but they cannot be modified once construction of an
instance has completed.

Storage Modifiers (Cocoa)

On the Cocoa platform, the type of a field declaration can be amended with one of theweak, unretained or strong Storage Modifier keywords, with strong
being the implied default.

var fValue: weak String;

To specify a Storage Modifier, the type cannot be inferred, but must be explicitly specified. Inferred types will always be consideredtrong.

Cocoa Only

Storage Modifiers are necessary on Cocoa only, to assist with Automatic Reference Counting (ARC). Thye can be specified on all platfroms, but have no
effect when using GC.

Visibility

The visibility of fields is governed by theVisibility Section of the containing type the fields is declared in, or theVisibility Modifiers applied to the
method.

It is strongly encouraged to keep all fields private, and useproperties to expose the class state externally.

Static Fields

Like most type members, fields are by default defined on the instance - that means fields can be called on and will execute in the context of an
instance of the class. All fields can be marked as static by prefixing the field's declaration with thelass keyword, or by applying thestatic Member
Modifier:

class var fName: String; // static field on the class itself
var fName2: String; static; // also a static field on the class itself

Other Modifiers

A number of other Member Modifiers can be applied to fields.

deprecated Triggers a deprecation warning when used.

external For Island/Toffee class fields; this field is defined in an external module.
implements ISomelnterface (See Explicit Interface Implementations).

readonly Readonly fields can only be set from the constructors, after that they are readonly.
unsafe Allows the use of unsafe types in the field signature.

volatile Volatile ensures access to this field is never optimized.

e o o o o o

See Also

Field Access Expressions
Properties

Storage Modifier
Local Variables

Methods

Methods are the building block of any program, as they contain what we commonly think of as "code": the actual logic that makes up the functionality
of a class.

e o o o

Simply put, a method is a block of code that can be called from elsewhere within the project to perform its function.

Methods are Object Oriented Programming's logical replacement for the plain "procedures" and "functions" defined by basic Pascal. Because methods
are such an important part of OOP languages, and because what we call something defines how we think of it, Oxygene introduced the new method
keyword back in 2004 to define methods.

Note: many of the details about methods covered in this topic also apply to other "method-like'Members, including Constructors, Finalizers, Custom
Operators and Property getters/setters.

This includes the sections on Parameters, Method Result, Method Body, Pre- and Post-Conditions and Generics, below.

Method Declaration Syntax

In its simplest form, a method declaration consists of themethod keyword, followed by a method name and an optional list of parameters that can be
passed to the method, in parenthesis. Methods can also have an optional result type, separated from the rest of the method with a colon.

The method declaration can optionally be followed by a number ofMadifiers, separated by semicolons. The most important modifiers will be covered in
more detail, below.

method MyMethodName(aParameter: String; aNotherParameter: Integer): Boolean; virtual;

Method Implementation Syntax

Unless it is empty, abstract or external (more on those below), each method declaration needs to provide an implementation. The implantation can be
provided right behind the declaration, using what Oxygene refers to as Unified Class Syntax, or it can be provided below the type declaration in the
implementation section of the file.

If the implementation is provided separarely, the method declaration (minus any modifiers) is repeated, but expanded to include the type name in
front of the method name:

method MyClass.MyMethodName(aParameter: String; aNotherParameter: Integer): Boolean;
begin

// code goes here
end;

The method body must consist of at least abegin/end block that can contain the zero or moreStatements that make up the method body. There can
also optionally be a require block at the beginning and anensure block at the end, both containing pre- and post-conditions to be checked before the
method starts and after it ends. Pre- and post-conditions are covered in more detail, below.

For compatibility with legacy Pascal compilers such asDelphi, methods can also have an optionalvar section at the start, where variables for use
throughout the method can be declared. Use of a var section is discouraged in favor of usingvar Statements in the main body of the method body, as
needed.

method MyClass.DoSomeWork(aData: String): String;
var
ICount: Integer; // not recommended
begin
ICount := aData.Length;
/...
end;

Parameters

A method can take zero or more parameters, listed after the method name, and enclosed in parenthesis. Individual parameters are separated by
semicolons, and each parameter must at the very least consist of a name and a type, separated by a colon.

Unlike other languages, including C# and Swift, an empty set of parenthesis is optional (and discouraged) for declaring methods that take no
parameters.

method DoSomething(aParameter: String);
method DoSomethingElse;

Optionally, a default value can be provided via the:= operator. If a default is provided, callers can omit the parameter in question, and the default will

be used instead:

method DoSomething(aParameter: String := 'Use this by default.');
‘out' and 'var' Parameters

Parameters can also have a modifier of eithervar or out. By default, parameters are passed into the method, but not back out. Inside the method, the
parameter becomes a local variable, and any changes made to it inside the method are not propagated to the caller.

Parameters declared with var will be passed into the method, and any changes made by the method will be passed back out when the method exits.
Parameters declared with out will start off as having theirdefault() value when the method starts, and any changes made to them will then be passed
out when the method is finished.

method GetValues(var a: Integer; out b: Integer);
begin

a:=a+ 15;

b:=10;
end;

Note that when passing heap-based Reference Types such as Classes, the var and out modifiers apply to thereference, and not the data stored within

the type. Changes made to a class passed in as regular "in-wards" parameter will still affect the caller, as it is holding as reference to the same class.
Changing the parameter to a different instance will not propagate outwards. When a reference type is passed via var, changes to the reference itself
will propagate back, and the caller will have a reference to the new object.

method GetValues(a: SomeClass; var b: SomeClass);

begin
a.SomeValue := a.SomeValue+15; // affects the instance that the caller passed in
a := new SomeClass(); // this change will not affewct ehe caller
b := new SomeClass(); // this change will affect ehe caller

end;

GetValues(x, y);
// x is changed, but still the same class. y is now a new class

'const var' Parameters

Parameters can optionally be marked as const var. If marked as such, they will be passed in the same fashion asvar parameters, discussed above, but
cannot be modified within the method.

This option is mainly used for performance reasons, allowing for example a large struct to be passed without causing a second copy to be created on
the stack, while still preventing changes to the original value from the caller's side.

'params' Method Parameters

The optional params keyword can be used on the last parameter to capture all extra parameters in a single array. To use params, this parameter has to
be a simple Dynamic Array.
method Write(a: String; params args: array of String);

begin
end;

Write(‘hello', 'this', ‘world'); // a is 'hello’, args is ['this', 'world']
Write('hello', 'world'); // a is 'hello’, args is ['world']
Write('hello'); // a is 'hello', args is [1 (empty array)

Method Result

If the method is defined to return a value, an implicitresult Variable is available in scope, within the method body. This variable is of the same type as
the method's return type, and initialized to the default() value of the type (typicallyo or nil).

The result variable can be both written and read, allowing you to use it to store an incremental status and be updated during the course of the
method's execution. This is a significant improvement over other languages, including C, C# or Swift, where a return value can only be set in the
same step as the method is exited.

Of course the exit Statement can still exit the method and return a value in one go at any time. I&xit is called with a value, that value is used as result.
If it is called without value, any previously set value in result will be used, just as if the method terminated by reaching its end.

Multi-Part Method Names

In order to fit in well with the API conventions on theCocoa platform, Oxygene has support for multi-part method names.

Multi-part method names are essentially the ability for a method's name to be split into separate parts, each followed by a distinct parameter. This is
"required" on the Cocoa platform because all the platform's APIs follow this convention, and we wanted Oxygene to be able to both consume and
implement methods alongside those conventions without resorting to awkward attributes or other adornments, and to feel at home on the Cocoa
platform.

A multi-part method has parameter parts for each part, both when being declared:
method RunCommand(aString: String) Arguments(params aArguments: array of String): Boolean;
...and when being called:

myClass.RunCommand('ebuild') Arguments('MyProject.sIn’, '--configuration:Debug');

While the feature was created for Cocoa, multi-part method names are supported on all platforms, and considered a regular feature of the Oxygene
language (and also compatible with C#, Swift and Java). We encourage to use and embrace them, as they are a great tool to make code more readable
and understandable.

Method Body

The method body is what makes up the bulk of a method, and provides its implementation. It starts with thenegin keyword and ends with a matching
end or - id a post-condition is provided - ensure keyword.

The method body is made up of xero or moreStatements, separated by semicolons (and, traditionally but optionally, a line break). Most (mut not all)
Expressions can also be used as standalone statements. When doing so, thevalue of the expression is simply ignored.

Statements can be simple one-line constructs (such as aMethod Call or a var Declaration, or they can be more complex structures that might even
contain their own sub-list of statements (such as a repeat/until Block.

o All Statements
o All Expressions that can be used as Statements

Pre- and Post-Conditions

Methods can provide optional pre-conditions that will be checked before the main mody of the method starts executing, or post-conditions that will be
checked after the method exits.

Both pre-conditions and post-conditions consist of a list ofBoolean expressions, separated by semicolons. Each condition will be evaluated in row, and
if any of them evaluates to false, execution will be aborted with a fatalAssertion.

Pre-conditions are provided before the method body, in an optionalrequire section. Post-conditions are provided after the method body, in an optional
ensure section:

method MyClass.IncrementCount(aBy: Int32);
require
aBy > 0;
begin
fCount := fCount + aBy
ensure
fCount - aBy = old fCount;
end;

In the ensure section, the old Operator can be used to refer to the original value a parameter or field had before the method started. This can be useful
for checking the validity od the result compared to previous state. Note that for heap-based Reference Types (except Strings such as Classes, which
receive special handling), the old operator only captures the old reference, but not the old state of the object it contains.

In both the require and ensure section, an optional more detailed error message can be provided, to be included in the assertion when a check fails. This
must be in the form of a constant String Literal, separated from the expression with a colon. (If the expression itself contains a colon, the whole
expression needs to be wrapped in parenthesis).

method MyClass.IncrementCount();
require

(SomeValue:SomeField = 0) : "SomeField may not be zero!";
begin

Note that pre- and post-conditions will only be compiled and executed if the'Enable Asserts" Compiler Option is on. By default, this option is off for
Release builds, to optimize performance. It is important to not rely on pre- and-postconditions to execute for the regular operation of the project, and
to avoid conditions with side effects.

Pre- and post-conditions should be usedonly for testing, not for general code flow.

Generic Methods

Similar to Generic Types, individual methods can be declared to have one or more generic parameters. The type parameters are provided enclosed in
angle brackets after the method name. These types are then used as placeholders for a more concrete type, allowing you to define methods that are,
well, generic, and not tied down to working with a specific type as parameter or result.

method ArrayHelpers.FindindexInArray<T>(list: array of T; item: T): Integer;

begin
for i: Integer := 0 to list.Length - 1 do begin
if list[i] = item then
exit i;
exit -1;
end;

For example, the FindindexInArray<T> method above can work with any type of array to find an item's index.

ArrayHelpers.FindIndexInArray<Int>([1,2,3], 2);
ArrayHelpers.FindIndexInArray<String>(["One","Two","Three"], "Four");

Optional Generic Gonstraints can be provided, using thewhere Member Modifier. Co- and contra-variance does not apply to generic methods.

method ArrayHelpers.SomeMethod<in T>(aSomeParaneter T); where T has constructor;

begin

Please refer to the Generic Types topic for a more detailed discussion on generics, including many details that apply to generics in members, as well.

Static Methods

Like most type members, methods are by default defined on the instance - that means the method can be called on and will execute in the context of
an instance of the class. A method can be marked as static by prefixing the method declaration with theclass keyword, or by applying thestatic
Member Modifier:

class method MyClassMethod: String; // static method on the class itself
method MyOtherClassMethod: String; static; // static method on the class itself
Visibility

The visibility of methods is governed by theVisibility Section of the containing type the method is declared in, or theVisibility Modifiers applied to the
method.

Virtuality

The Virtuality of methods can be controlled by applying one of theVirtuality Member Modifiers.

method OverrideMe; virtual;

Other Modifiers

A number of other Member Modifiers can be applied to methods:

async
deprecated

empty

external

implements ISomelnterface.SomeMember (See Explicit Interface Implementations)
inline

iterator (See |terators)

locked

locked on Expression

mapped to (See Mapped Members)

optional (Interface members only)

partial (See Partial Types)

raises

unsafe (See Unsafe Code on .NET)

where (see Generic Methods, above)

®© o6 © 06 0o 06 0 0 0 0 0 0 0 o o

The Legacy procedure and function keywords

For compatibility with legacy Pascal languages, theprocedure and function keywords can be used instead ofmethod, when Delphi Compatibility is turned
on. Methods declared with function must have a result type, while those declared with procedure may not.

We discourage the use of procedure and function and strongly encourage you to embrace themethod keyword.

See Also

Method Call Expressions
Member Modifiers

result Exression

exit

Partial Methods in Partial Types
Value Types vs. Reference Types
Local Method Declarations
Multi-Part Method Names

e o o o 0o 0o o o

Properties
Properties provide abstraction of a type's data by combining the concepts offields (to store data in a Class or Record) and Methods (to perform

actions on that data) into a single entity.

When accessed, a property behaves much like a field - it has a value that can beead and (optionally) updated. But unlike fields, accessing a property
does not directly give unfettered access to the stored data in the class or record. Instead, access to a property goes through custom method-like
getter and setter code.

This provides three main benefits:

1. Properties can be read/write or read-only (and in rare cases even write-only)
2. Setter code can validate new values
3. Setter code can perform additional actions (such as updating related values)

Combined, these aspects allow classes (and records) totake control of the data by not allowing outside access to their fields, which any external code
could modify in an uncontrolled manner.

In fact, it is considered good practise to have all fields of a class markedbrivate, so only the class's code itself can access them, and funnelall external
modifications through properties (or regular Methods, of course).

A further benefit of properties is that their getters can generate or modify the returned value dynamically - so not every property necessarily maps
directly to a value stored in a field.

Property Declaration Syntax

A simple property declaration consists of theproperty keyword, followed by a property name and a (result) type, separated with a colon and optional
getter (read) and setter (write) statements:

property Name: String read fName write SetNameAndUpdateView;

If only a getter or or only a setter is provided, the property will be read-only or write-only, respectively. Ifeither getter or setter is provided, the
compiler will automatically provide a field for storage, and a simple getter and setter that uses that field. Such a property works much like a regular
Field then, from a usage level.

The getter can be any Expression that returns the correct type. This could be a simple field access (as in the example above), a method, or a more
complex expression:

property Name: String read fName;
property Name: String read GetName;
property Name: String read FirstName+" "+LastName;

method GetName: String;

The setter can be any Writable Expression (such as a field, another property or even aDiscardable), or the name of a method that takes a single
parameter of the right type:

property Name: String read fName write fName;
property Name: String read fName write SetName;
property Name: String read fname write nil;

method SetName(aNewName: String);

Alternatively, a full begin/end block of statements can also be provided for either the getter or the setter. In this case, theralue Expression can be used
to access the incoming value, within the setter code:

property Value: Double
read begin

result := GetInternalValue;
result := (result + 5) * 8;

end

write begin
SetinternalValue(value / 8 - 5);

end;

Stored Properties

As mentioned above, if neither a getter or setter are provided, the property will be read/write, and the compiler will automatically generate getters
and setters that store and obtain the value from a (hidden) backing variable. In this case, the property behaves very much like a plain field:

property Name: String; // internally stored in a hidden String var

Different that an actual field, stored properties still areexposed via getter and setters, so they can be "upgraded" to use custom getters or setter
later, without breaking binary compatibility of a type. Also, they will still support the notify Modifier, and other property-specific features.

Stored properties can be marked with thereadonly Member Modifier to become read-only. Read-only properties can still be written to from anlnitializer
or from the class's Constructors - but they cannot be modified once construction of an instance has completed.

Initializers

Like Fields, Stored Properties can be assigned an initial value right in their declaration by having the property declaration closed off with the=
operator followed by an expression. Optionally, they can be marked with the lazy Member Modifier to defer execution of the initializer until the first
time the property is accessed.

property Name: String := 'Paul’;

Please also refer to the Constructors: Initializers topic for more detail on when and how fields get initialized.

Indexer Properties

While regular properties represent a single value (of an arbitrary type, of course), indexer properties can provide access to a range of values of the
same type. This is similar in concept to an Array, but each access - read or write - goes through the proper getter or setter code.

An indexer property is declared by providing one or more parameters after the property name, enclosed in square brackets. Indexer properties cannot
be stored properties, so either aread or a write statement is required.

property Items[alndex: Integer]: String read ... write ...;

The rules for read and write statements are similar to regular properties: The name of the indexer parameter(s) may be used in the statements, and if
the name of a getter of setter method is provided, the signature of this method must include parameters that match the property's parameters:

property Items[alndex: Integer]: String read fMyArray[alndex];
property Items[alndex: Integer]: String read Getltems wrire Setltems;

method Getltems(alndex: Integer): String;
method Setltems(alndex: Integer; aValue: String);

Of course, an indexer property does not necessarily have to be backed to an array-like structure, it can also generate (or store) values more
dynamically. In the example below, the IntsAsStrings could be accessed with any arbitrary index, and would return the approriate string.

property IntsAsStrings[alndex: Integer]: String read alndex.ToString;
var s := myObject.IntsAsString[42];

Indexer properties can have more than one parameter (i.e. be multi-dimensional), and - different thatArrays - they can be indexed on any arbitrate
type, not just Integers.

Note that, also unlike arrays, indexer properties themselves have no concept of a count, or a valid range of parameters. It is up to the type
implementing the property to provide clear semantics as to how an indexer can be accessed. For example, a List class indexed with integer indices
might expose a separate Count property, while a dictionary would allow arbitrary indexes - and might decide toraise an exception, or return nil for
values not in the dictionary.

Default Indexers

One indexer property per class (optionally overloaded on type) can be marked with thedefault Member Modifier. The default property can then be
accessed by omitting the property name accessing the indexer off an instance (or type) itself;

type
MyClass = public class

public
property Items[alndex: Integer]: String read ...; default;

var s := myObject[0]; // same as myObject.ltems[0];

Required Properties

Properties be marked with the required directive require explicit initialization whenever an instance of the containing class, or a descendant, is created.
When using a constructor that does not initialize the property implicitly, an explicit vaklue must be passed asroperty Initializer to the new call.

type
Person = class
public
property Name: String; required;
end;

new Person(Name := 'Wednesday');

Property Notifications

Non-indexed properties can optionally be marked with the notify Member Modifier. Properties marked with notify will emit special platform-specific
events whenever they are changed - allowing other parts of code to be notified about and react to these changes.

How these notifications work and how they can be retrieved depends on the underlying platform. Notifications are used heavily iflWPF on .NET or with
Key-Value-Observation (KVO) on Cocoa.

Please refer to the Property Notifications topic, the [Notify] Aspect and the Observer class for more details on this.

Storage Modifiers (Cocoa)

On the Cocoa platform, the type of a stored property declaration can be amended with one of theweak, unretained or strong Storage Modifier keywords,
with strong being the implied default.

property Value: weak String;
To specify a Storage Modifier, the type cannot be inferred, but must be explicitly specified. Inferred types will always be consideredtrong.
Cocoa Only

Storage Modifiers are necessary on Cocoa only, to assist with Automatic Reference Counting (ARC). Thye can be specified on all platfroms, but have no
effect when using GC.

Static Properties

Like most type members, properties are by default defined on the instance - that means the property can be called on and will execute in the context
of an instance of the class. A property can be marked as static by prefixing the property declaration with thelass keyword, or by applying thestatic
Member Modifier:

class property Name: String; // static property on the class itself
property Name2: String; static; // also a static property on the class itself

Visibility

The visibility of properties is governed by theVisibility Section of the containing type the property is declared in, or theVisibility Modifiers applied to
the property.

By default, both getter and setter of the property are accessible on that visibility level, but visibility can be overridden by prefixing either the getter or
the setter with a separate visibility keyword:

property Name: String read private write; // readonly for external access

Virtuality

The Virtuality of properties can be controlled by applying one of theVirtuality Member Modifiers.
property Name: String read; abstract;

Properties can be marked as abstract, if a descendant class must provide the implementation. Abstract properties (and properties ininterfaces may
not define a getter or setter, but they can optionally specify the read and/or write keywords to indicate whether a property can be read, written or both:

property A: String; abstract; // read/write
property B: String read; abstract; // read-only
property C: String write; abstract; // write-only
property D: String read write; abstract; // also read/write

Other Modifiers

A number of other Member Modifiers can be applied to properties.

copy Objc only: Creates a copy of the value when setting.

default (See Default Indexers, above).

deprecated Makes an event deprecated.

implements ISomelnterface.SomeMember (See Explicit Interface Implementations).
implements ISomelnterface (See Explicit Interface Implementations).

inline Makes the accessors inline in the caller.

lazy (See Lazy Initializers, above).

locked Like locked on, with self as an expression.

locked on Expression puts a lock around the accessors body, locking on Expression.
notify (See Property Notifications, above).

optional (Interface members only).

readonly (See Read-only Stored Properties, above).

required (See Required Properties, above)

unsafe Allows the use of unsafe types in the property signature and body.

®© © o6 06 0 0 0 0 0 0 0 0 0 o

See Also

Property Access Expressions

Property Notifications, the [Notify] Aspect and the Observer Class
Fields

Storage Modifier

Arrays

Block Types

Local Properties

e o o o o o o

Events

Events are a special kind of Member in a Class or Record that allow other parts of the code to subscribe to notifications about certain, well, events in
the class.

An event is very similar to aBlock type Field, but rather than just storing a single block reference, events are "multi-cast". This means they maintain a
list of subscribers, and when calling the event,all subscribers will get a callback.

Platform Considerations

Although events are most commonly used on.NET and both Cocoa and Java have different paradigms to deal with similar concepts (such as regular
Blocks, Delegate Classes (not to be confused with .NET's use of the term) andAnonymous Interfaces), events are supported on all platforms.

Event Declaration Syntax

A simple event declaration consists of theevent keyword, followed by a name for the event and the type ofBlock that can be used to subscribe to the
event. The block type can be a named Alias, or an explicit block declaration:

event ButtonClick: EventHandler; // EventHandler is a named block defined elsewhere
event Status: block(aMessage: String);

Just as with Stored Properties, with this short syntax the compiler will take care of creating all the infrastructure for the event, including a private
variable to store subscribers, and add and remove methods.

Optionally, an add and remove clause can be provided to explicitly name the methods responsible for adding and removing handlers. These methods
must then be declared and implemented separately, and they must take a single parameter of the same type as the event (This, too, is comparable to
the read and write statements for a Property). It is then up to the implementation of these methods to handle the subscription/unsubscription logic.

private
method AddCallback(v: EventHandler);
method RemoveCallback(v: EventHandler);
public
event Callback: EventHandler add AddCallback remove RemoveCallback;
Alternatively, on .NET only, a block field to be used for storage can be provided via theblock (or legacy delegate) keyword:
private
fCallback: EventHandler;

public
event Callback: EventHandler block fCallback;

Subscribing to or Unsubscribing from Events

Externally, code can subscribe or unsubscribe from an event by adding or removing handlers. This is done with the speciak= and -= operators, to
emphasize that events are, by default, not a 1:1 mapping, but that each event can have an unlimited number of subscribers.

method ReactToSomething(aEventArgs: EventArgs);
...

myObject.Callback += @ReactToSomething

/...

myObject.Callback -= @ReactToSomething

Of course, any compatible Block can be used to subscribe to an event - be it a method of the local type, as in the example above or e.g. aAnonymous
Method.

Please refer to the Event Access Expression topic for more details.

Raising Events

An event can be raised by simply calling it like aBlock or Method. Before doing so, one should ensure that at least one subscriber has been added,
because firing a unassigned event, just as calling a nil block, will cause a NullReferenceException.

The assigned() System Function or comparison to nil can be used to check if an event is assigned.

if assigned(Callback) then
Callback();

By default, only the type that defines the event can raise it, regardless of the visibility of the event itself. See more on this in the following section.
Visibility

The visibility of events is governed by theVisibility Section of the containing type the event is declared in, or theVisibility Modifiers applied to the
event.

This visibility extends to the ability to add and remove subscribers, but not to the ability toraise (or fire off) the event, which can be controlled by the
raise statement, described below.

Optionally, separate visibility levels can be provided for theadd, remove and raise statements. These will override the general visibility of the event
itself:

event Callback: EventHandler public add AddCallback private remove RemoveCallback;

Raise Statements

Optionally, a raise statement combined with an (also optional) visibility level can be specified, in order to extend the reach of who can raise (or fire off)
the event. By default, the ability to raise an event is private, and limited to the class that declares it.

event Callback: EventHandler protected raise;

In the example above, raising the event (normally private) is propagated to aprotected action, meaning it is now available to descendant classes.

Static/Class Events

Like most type members, events are by default defined on the instance - that means the event can be called on and will execute in the context of an
instance of the class. A event can be marked as static by prefixing the event declaration with theclass keyword, or by applying thestatic Member
Modifier:

class event SomethingChanged: EventHandler; // static event on the class itself
event SomethingElseChanged: EventHandler; static; // also static event on the class itself

Virtuality

The Virtuality of events can be controlled by applying one of theVirtuality Member Modifiers.
event SomethingChanged; virtual;

Events can be marked as abstract, if a descendant class must provide the implementation. Abstract events (and events innterfaces may not define
an add, remove Or raise statement.

event OnClick: EventHandler; abstract;

Other Modifiers

A number of other Member Modifiers can be applied to events.

deprecated Makes an event deprecated.

implements ISomelnterface.SomeMember (See Explicit Interface Implementations).

locked Like locked on, with self as an expression.

locked on Expression executes a lock on the expression around the accessors of this event.
mapped to (See Mapped Members).

optional (Interface members only).

unsafe Allows the use of unsafe types in event signatures.

e o o o o o o

See Also

o Event Access Expressions
e Block Types

Constants

Constants represent pre-defined and unchangeable values associated with a type.

They are similar in concept toFields, but their value is determined at compile time and, as the name implies, will remain unchanged during the the
course of the execution of the program.

Constants are automatically considered static, and are available both on instances of a type as well as on the type itself (according to their visibility
level, of course).

Constants are not to be confused with [Read-only Fields](Fields#read-only fields), which are initialized at runtime and can be different for each
instance of a class and - most notably - can contain more complex values.

When a constant is used from code, its value is inlined. This is an important distinction when using constants defined fronreferenced libraries: if the

value for a constant changes in a newer version of the library, but the code using the constant is not recompiled, it will continue to use the value of the
constant that it was compiled with.

Declaration

Similar to Fields and the var keyword, constants are defined with the const keyword. After the const keyword, every subsequent item will be considered a
constant.

To emphasize the constant and unchanging nature, constants use the= equals operator to specify their value, not the := assignment operator as used
for Field or Property Initializers.

type
MyClass = public class
private
const Pl = 3.14;
const E =2.7;

const Five: Double := 5
const Hello = 'Hello";

var AnyNumber :=5;
end;

An optional type name can optionally be specified, to override the default type inferral. In the above examples" would normally infer to be anlnteger
type, but here Five will explicitly become a Double, instead.

Visibility

The visibility of constants is governed by theVisibility Section of the containing type the method is declared in, or theVisibility Modifiers applied to the
constants.

Static Constants

As already mentioned above, constants are always static, and do not need to (in fact, cannot) be prefixed with thelass keyword nor can they have the
static Modifier applied.

Virtuality and Other Modifiers
Polymorphism and other modifiers do not apply to constants.

See Also

o Field Access Expressions
e Fields
e Local Constants

Constructors

Constructors are a special method-like type member that defines how aClass or Record gets instantiated and initialized (i.e. "constructed").

Constructors are not invoked directly, as regular methods would be. Instead, thenew Expression is used to create a class instance and call one (or
more) of its constructors implicitly, and the same new Expression can also be used to initialize a record.

Constructors can also calleach other, deferring part of object construction to a different level, by using theconstructor Expression. More on that, below.

Note: Constructors (like Finalizers and Custom Operators) are very similar in structure to regular methods, and many topics covered in theMethods
topic will apply to them, as well.

This includes the sections on Parameters, Method Body and Pre- and Post-Conditions.

Constructor Declaration Syntax

A constructor declaration consists of the constructor keyword, optionally followed by a list of parameters that can be passed to the constructor, in
parenthesis. Constructors cannot have a result.

The constructor declaration can optionally be followed by a number ofMaodifiers, separated by semicolons. The most important modifiers will be
covered in more detail, below.

constructor (aParameter: String; aNotherParameter: Integer); public;

Constructor Implementation Syntax

Unless it is empty or abstract, each constructor declaration needs to provide an implementation. The implantation can be provided right behind the
declaration, using what Oxygene refers to as Unified Class Syntax, or it can be provided below the type declaration in theimplementation section of the
file.

If the implementation is provided separately, the constructor declaration (minus any modifiers) is repeated, but expanded to include the type name in
front of the method name:
constructor MyClass(aParameter: String; aNotherParameter: Integer);
begin
// code goes here
end;

The constructor body follows the same rules as described forMethods. This includes optional legacy var sections, and Pre- and Post-Conditions.

Deferred Construction

For classes which are always part of the global class hierarchy, each constructor must, eventually, defer back to a constructor of the ancestor class, to
allow it to perform its part of the initialization, as well. This can happen implicitly, or explicitly with a constructor Expression.

If no constructor Expression is present, the compiler will automatically generate a call to a matching constructor in the base class, as first step of the
constructor. A matching constructor is either one with the exact same parameters as the current constructor, or one without any parameters.

In cases where no matching constructor exists, an explicitconstructor call is required to let the compiler know which constructor to defer to.

A constructor can choose to defer construction to a different constructor in thesame class (a so called "convenience constructor"), or to one in the
base class. Even if construction is deferred within the same class, eventually one constructor in the chain must call a base constructor.

A constructor call is done by using theconstructor keyword, optionally followed by whatever parameters are required for the constructor in question. By
default, a constructor call defers to a constructor in the same class. The call can be prefixed with the inherited keyword in order to call the base class.

type
Ancestor = public class
public
constructor(aString: String); empty;
end;

Descendant = public class(Ancestor)

public
constructor(aString: String); // will automatically call the base .ctor
begin
writeLn("l think this line is mostly filler");
end;

constructor(aValue: Double);
begin

inherited constructor("Number "+aValue.ToString); // calls the base .ctor
end;

constructor(aValue: Integer);
begin
constructor(aValue.ToString); // defers to another local .ctor
end;
end;

Constructor calls must happen on the topbegin/end level of the constructor body; they may not be nested in other constructs, such asf/then
Statements, loops or the like. They may also not be preceded by anytry Block or exit Statements. Each constructor may also perform no more than one
call to a different constructor.

Also note that access toself is not allowed in a constructor until after the deferred constructor call. This includes:

e Use of self directly.
e Access to fields of the base class.
o Calls to methods, properties or events of the current class or the ancestor.

Constructors in Mapped Types

Some special considerations apply to constructors inMapped Types. Please refer to the Constructors sub-topic there for details.

Initializers

Types can contain Fields and Stored Properties defined with an initializer that sets a start value for them. Initialization of these fields happens as part

of the constructors, with code automatically generated by the compiler. There are certain rules that are relevant for understanding how fields will be
initialized.

o Initializers that do not require access toself will be run at the beginning of any constructor that calls abase constructor.
o Initializers that require access toself will be runafter the call to the base constructor.

This introduces two important caveats:

1. Convenience constructors cannot rely on initializers to have run until after they have deferred to a different constructor (which in turn, will have
deferred to the base class).
2. No constructors can rely on initializers that requireself to have run until after the deferred call.

Note that this only applies to explicit initializers. All fields or properties will of course be pre-set to theidefault value (e.g. 0 or nil) from the very
beginning.

Also note that this does not apply toProperties marked with the lazy Member Modifier, which defers execution of the initializer until the first time the
property is accessed.

Inheriting Constructors

If a class declares no constructors of its own, it automatically inherits albublic constructors of the base class.

If the base class wasabstract, any protected constructors are also inherited, and made public by default. This is to enable the common practice of
declaring all constructors on an abstract class protected, to indicate that the class cannot be created.

Once a class declares one or more constructors of its own, only these constructors will be available to create instances of the class; any base
constructors that are not matched become unavailable. (If this were not the case, instances of the descendant class could be created through the base
constructors, possibly leaving the class in an incomplete state.)

Multi-part Constructor Names

Similar to Multi-Part Method Names, constructors can provide optional names, and have those names split into multiple parts for all parameters.
If provided, it is convention for constructor names to start with the lower-case wordwith, followed by descriptive nouns for each parameter:
constructor withFirstName(aFirstName: String) LastName(aLastName: String);

...and when being called:

var x := new Person withFirstName("Paul") LastName("Miller");

Cocoa-Specific Concerns

On Cocoa, unnamed constructors map toinit methods, while named and/or multi-part constructors map toinitwith* methods. You can use either
constructor syntax (recommended) or method syntax with the right naming conventions to define Cocoa class constructors.

Language Interoperability

Named multi-part constructors interoperate with all Elements languages (and Objective-C, onCocoa). For Swift they map to the equivalentinit
member, dropping the with prefix, and inits defined in Swift will be available in Oxygene,RemObjects C# and Java with the with prefix. e.g.

init(fistName: String, LastName: String)

Both RemObjects C# and Java provide language extensions for defining and calling named multi-part constructors, as well.

Static Constructors

By default, constructors are applicable to individual instances of a class - that means they work on the instance being constructed.

A single parameterless static constructor can be provided by prefixing the constructor declaration with theclass keyword, or by applying thestatic
Member Modifier. This static constructor will automatically be called once (and exactly once) before the first instance of the class is created or the first
static member of the class is accessed.

constructor; static; // static constructor

Regardless of what section it is declared in, the static constructor will always have private visibility.
Static fields will be initialized from an implicit class constructor.

Visibility

The visibility of (non-static) constructors is governed by theVisibility Section of the containing type the method is declared in, or theVisibility Modifiers
applied to the constructors.

Virtuality

By default, constructors in Oxygene do not participate in Polymorphism, unless Class References are used - which is rare. As such, you willnot
generally declare constructors as virtual or override, even when overriding constructors from a base class.

The usual modifiers can be used when designing classes to be used withClass References, please refer to that topic for more details.

Other Modifiers

A number of other Member Modifiers can be applied to constructors.

See Also

Methods

constructor Expressions
inherited Expressions
new Expressions

e o o o

self Expressions
Mapped Types

Finalizers

A finalizer is a special method-like type member that executes once, just before aClass or Record gets destroyed as part of Garbage Collection or
Automatic Reference Counting.

Finalizers are meant as a last resort to clean up resources (such as unmanaged resources onNET and Java), in case the type was not properly closed
or disposed of as it should have been.

Note: Finalizers (like Constructors and Custom Operators) are very similar in structure to regular methods, and many topics covered in theMethods
topic will apply to them as well, in particular the section on Method Body.

Similar to Constructors, Oxygene uses a special finalizer keyword to declare finalizers. Finalizers are always consideredprivate, and they cannot be called
explicitly from code, they will only be called implicitly, by the runtime. Finalizers cannot have parameters or a return type.

type
MyClass = public class
finalizer;
begin
end;
end;

On .NET and Java, finalizers will be executed on a special thread run by theGarbage Collector instead of the main thread.

On .NET, Java and Island, you should make sure to understandusing Statements and the IDisposable/AutoCloable pattern before deciding whether your
classes require a finalizer. Read More:

Platform Considerations

Finalizers for Records are supported only on theCocoa and Island platforms. On .NET and Java, finalizers are restricted toClasses.

Visibility

Finalizers always have private visibility, regardless of whatVisibility Section they are declared in. ExplicitVisibility Modifiers other than private are not
allowed on finalizers.

Virtuality

Finalizers do not directly participate inPolymorphism, and cannot have Virtuality Modifiers. If a base class implements a finalizer, the compiler will
automatically make sure finalizers in descendant classes will safely call the base finalizer as last step of their execution.

Other Modifiers

No modifiers are allowed on finalizers.

See Also

Disposable Pattern

IDisposable Pattern (.NET)

Object.Finalize Method (.NET)

Understanding when to use a Finalizer in your .NET class(.NET)
AutoCloable and how to use it (Java)

IDisposable (Island)

® o o o o o

Iterators

Iterators provide an easy and comfortable way to provide data for a Sequences.

Iterators are special types of Methods that return a Sequence. Rather then executing all at once and returning a finished list, tough, bits of the iterator
are run as needed, whenever a new ite for the sequence is requested.

Note: Since iterators are very similar to regular methods, many topics covered in theMethods topic will apply to them, as well.

This includes the sections on Parameters and Method Body.

Iterator Syntax

Iterators are declared like normal methods, but with three important distinctions:

1. Iterator methods must return a Sequence type.
2. They must me marked with theiterator Member Modifier.
3. Instead of returning a value, they pass back individual items of the sequence usingyield.

Of course, any method can return a sequence, simply by declaring a sequence type as their result type. A normal method would need to handle the
work of constructing the sequence itself - which can be easy when returning data from, say an Array or a list, but becomes more complicated when
the data should be generated dynamically as the sequence is enumerated.

What the iterator syntax adds to the table is that it makes it easy to write linear code that returns one item of a sequence after the other, but allow
that code to be executed non-linearly, piece by piece, if and when the sequence is accessed.

This is done via the yield statement), which is available only in iterators, and replacesresult or the ability to exit with a value.

While the iterator is declared to return sequence of a specific type, inside it, each use of thejield statement will yield a single valueof that type. For
example

method NaturalNumbers: sequence of Integer; iterator;
begin

fori:= 1 to Int32.Max do
yield i;
end;

for each n in NaturalNumbers do
writeLn(n);

Under the Hood

When an iterator is called, the body of the iterator method is not actually executed to calculate the whole sequence. Instead, a new object is
instantiated, representing the sequence. Once code starts to enumerate over the sequence, for example in a for each loop, the iterator's method body
will be executed piece by piece in order to provide the sequence elements.

It will run until the first occurrence ofyield, and that value will be returned as the first value of the sequence - and then stop. As the loop continues to
iterate the sequence and asks for the next item, execution resumes at that position, until the next yield statement is encountered, and so on — until
the method body reaches it's end, marking the end of the sequence.

Of course the above example is very simple (and could be easily reproduced without iterators, for example using &or Loop Expression. But iterators
allow for arbitrary complexity in code, and as many yield statements as needed.

For example, one could easily imagine a complex parser that processes data, with many nestedif/then Clauses or case Statements that dive deep into a
data structure and yield new items for a sequence from many places.

Oxygene;'s iterator syntax allows such complex logic to be expressed as linear flow - leaving it to the compiler to unpack the code so that for each tem
of the sequence, execution runs form one yield statement to the next, and no further.

method WeirdSequenceOfNumbers(aExtraWeird: Boolean): sequence of String; iterator;
begin
yield 'One";
yield 'Two";
yield 'Three';
fori:=4to 20 do
yield i.ToString;
yield 'Twenty-1';
if aExtraWeird then begin
fori:=20to 90 do
yield (i*3).ToString;
yield "Twohundred and seventyone";
end
else begin
fori:= 20 to 90 do
yield i;
end;
end;

Delegating Iteration to a Sequence

The yield keyword also supports delegation of the iterator to a second sequence, as shown below:
var MoreValues := [3,4,5,6]; // array of Int32, can act as sequence

method Somelntegers: sequence of Int32; iterator;
begin
yield 1; // adds "1" to the sequence
yield 2; // adds "2" to the sequence
yield MoreValues; // adds "3" thru "6" to the sequence, from the array
yield 7; // adds "7" to the sequence
end;

When the iterator reaches the relevantyield statement, subsequent items are retrieved from that sequence, until it ends. After that, it continues to the
next local yield statement. One can think of it as shorthand for:
yield 1; // adds "1" to the sequence
yield 2; // adds "2" to the sequence
for each i in MoreValues do
yield i
yield 7; // adds "7" to the sequence

Limitations for Code in Iterators

In general, almost all code constructs can be used in iterators, including complex loops and conditional statements.

Since yielding in an iterator returns back to the caller on every iteration, it's not allowed toyield from within a protected block such as alocking
statement or a try/ finally block, as that would leave an unbalanced Exception Handling Stack.

In addition, while an iterator can use theexit Statement to prematurely finish it's execution in any place, it may not return a value as part of the exit.
Similarly, the result Expression is not available.

Implementing Asynchronous Sequences

Iterators can implement an Asynchronous Sequences, simply by specifying the appropriateasync sequence of X result type:
method Somelntegers: async sequence of Int32; iterator;
begin
for i: Integer := 0 to 25 do
yield il;
end;

Asynchronous sequences can then be iterated via an *await for each Loop.

Static Methods, Visibility and Virtuality and Other Modifiers

Since iterators are methods, they can be made static, and visibility and virtuality applyjust as for reqular methods.

See Also

Sequence Types

yield Statements

for each Loops

for each Loop Expressions
await for each Loop Statements

e o o o o

Custom Operators

Types provide custom operator implementations to override the behavior of many of the standard Unary and BinaryOperator Expressions for specific
type combinations.

For example, if a class or record contains data that, logically, a+ operation would make sense for, a custom Add operator can be provided to allow the
expression a + b to be evaluated using the correct rules.

Note: Custom Operators (like Constructors and Finalizers) are very similar in structure to regular methods, and many topics covered in theMethods
topic will apply to them as well.

This includes the sections on Parameters, Result, Method Body and Pre- and Post-Conditions.

Operators can be defined forClasses and Records, as well as for other types (including external ones) viaExtensions or as Globals).

The following standard operators can be overridden:+, -, *, /, div, mod, and, or, xor, <, =, =, >, = and =. In addition, two cast operators, Implicit and Explicit,
can be provided to allow implicit and explicit casting from and to other types.

A custom operator declaration consists of theoperator keyword and the operator name, always followed by a list of parameters in parenthesis, and a
result type. The names and list of parameters are well-defined and must match the table below.

Operators are always considered static; the static Member Modifier or a class keyword prefix are optional for consistency, and have no effect.

type
ComplexNumber = public record
public
Real: Double;
Imagnary: Double;

operator Add(lhs: ComplexNumber, rhs: ComplexNumber): ComplexNumber;
operator Implict(aOther: Double): ComplexNumber;
operator Explicit(aOther: Double): ComplexNumber;
operator Explicit(aOther: ComplexNumber): Double;
end;

At least one parameter (or, for casts, the result) must be of the type that the operator is defined on. The other parameter can be of a different type:

operator Add(lhs: ComplexNumber, rhs: Double): ComplexNumber;
operator Add(lhs: Double, rhs: ComplexNumber): ComplexNumber;

Using Operators

Expressions using the above operators will automatically use custom operators, the right and left hand side of the expression (or just the single
operand, for Unary Operators such as not) are strongly typed to match the parameters of an operator (or one of the base classes).

For example, an Add operator defined such as
type
Foo = class
operator Add(aFoo: Foo; aOther: Object);
would be called for any expression such asa + b where a is of typeFoo, and b is any type (that descends from Object).

Note that the operands need to bestrongly typed, as operator overloading is resolved at compile time. For example, in the following scenario, the
custom operator would not be called, even thougha holds a Foo class at runtime, because to the compiler, a is just an object, and operarors are not
Polymorphic:

var a: Object := new Foo();

var b: Object := "Hello"

var X := a+b;

Operators can be kept "flexible" by keeping one parameter weakly-typed (such as in the example above), and checking for the best operation at
runtime, in the operator's implementation. For example, the above operator allows to add a Foo instance to just about anything else - be it astring, an
Integer, or even anotherfoo. It is then up to the implementation to take the appropriate action depending on the type ofiOther.

Operator Names

The following special names need to be used when implementing operators:

Name Oxygene Operator Comments/Example
Plus + Unary, +5
Minus - Unary, -5
BitwiseNot not Bitwise not: not $00ff
LogicalNot not Logical not: if not true
Increment inc() (r?oa)ps to the single parameterinc() system function, and ++ in C# &
Decrement dec() maps to the single parameterdec() system function, and -- in C# & Co)
Implicit — Automatic (implicit) type casts
Explicit Explicit Manual (explicit) type casts with as or ()
True — Returns whether a value represent "true"

False — Returns whether a value represent "false"

Name Oxygene Operator Comments/Example

Add + "5+3"

Subtract - "5-3"

Multiply * 53"

Divide /, div "5/3", "5 div 3"

IntDivide div "5 div 3" (only with Delphi-style Divisions enabled)
Modulus mod "5 mod 3"

Pow ok X to the power of y, e.g.: "10**5"
BitwiseAnd and Bitwise "and", $08ad and $00ff = $00ad
BitwiseOr or Bitwise "or", $08ad or $00ff = $08ad
BitwiseXor xor Bitwise "xor", $08ad or $00ff = $0852
ShiftLeft shl

ShiftRight shr

Equal

NotEqual #, <>

Less <

LessOrEqual =, <=

Greater

>
GreaterOrEqual =, >=

In in Checks if the left value is contained in the right

— and Logical "and" (cannot be overloaded)

— or Logical "or" (cannot be overloaded)

— xor Logical "xor" (cannot be overloaded)

Box — Used when boxing value types

Unbox — Used when un-boxing value types

Assign = Used when assigning records (Island only)

IsNil — Returns whether a value represents "unassigned"/nil

The following alias names are supported forDelphi Compatibility:

Name Equivalent to Comment
Inc Increment
Dec Decrement
Positive Plus
Negative Minus
LessThan Less

LessThanOrEqual LessOrEqual
GreaterThan Greater
GreaterThanOrEqual GreaterOrEqual

LeftShift ShiftLeft
RightShift ShiftRight
Visibility

The visibility of operators is governed by theVisibility Section of the containing type the operator is declared in, or theVisibility Modifiers applied to
the operator.

Static/Class Annotations

Operators are always static and do not have access to instance data (except of course the instances passed in as parameters). They do not need to
(but are allowed to) be prefixed with the class keyword or have a static Member Modifier.

Virtuality

Since operators are always static, they do not participate inPolymorphism, and cannot have Virtuality Modifiers.

Other Modifiers

A number of other Member Modifiers can be applied to operators.

deprecated Triggers a deprecation warning when used.

empty Empty body; when calling this does nothing.

inline Makes the body of this method inlined when calling this.

locked Like locked on, with Self as an expression.

locked on Does a lock on Expression around the body of this method.

mapped to (See Mapped Members).

raises Defines the Java raises condition for this operator; this is the list of exceptions it might throw.
unsafe (See Unsafe Code on .NET).

e © o o 0o o o o

See Also

Operators

Unary Operators

Binary Operators

inc() and dec() System Functions

Nested Types

Classes can also define Nested Types. Nested types are like regular custom types, except they are considered part of the class they are nested in, and
their visibility can be scoped as granular as all class Members.

Nested types are declared using the nested in syntax, and (outside of the containing class) are referred to in the same way as static class members
would - prefixed with the name of the class, and dot.

Refer to the Nested Types topic for more details.
**“oxygene type OuterClass = public class end;
InnerClass nested in OuterClass = public class end;" ™"
These can be accessed as OuterClass.InnerClass, e.g.:
var i := new OuterClass.InnerClass(...);

Visibility

A visibility level modifier can be applied to a class type, the default level isassembly. Note that because nested types are considered class members,
they can be applied the full range of more granular member visibility levels, instead od just public or assembly.

Other Modifiers

A nested type can be any Custom Type or Type Alias that is marked with the nested in Type Modifier.

See Also

Custom Types
Classes

Records
Type Aliases

e o o o

Invariants

Classes and Records can define optionally define invariants - boolean conditions that will automatically be enforced to be true by the compiler.

Invariants together with Pre- and Post-Conditions in Methods are part of part of Oxygene'sClass Contracts feature that enables Design by Contract-like
syntax to create self-testing types.

Invariants are used to define a fixed state an instance of the type must fulfilbt any given time.

Invariants are declared in a special section of the class or record type initiated with theinvariants keyword. Inside the invariants section, zero or more
boolean expressions can be listed, separated by semicolon. At certain times during the execution of the program (more on that below), these
expressions will be evaluated, and execution will abort with a fatal Assertion, if one of them fails (i.e., evaluates to false).

type
MyClass = class;
public
... some methods or properties
public invariants
fField1l > 35;
SomeProperty = 0;
SomeBoolMethod() and not (fField2 = 5);
private invariants
fField > 0;
end;

Invariants can provide an optional more detailed error message, to be included in the assertion when a check fails. This must be in the form of a
constant String Literal, separated from the expression with a colon. If the expression itself contains a colon, the whole expression needs to be wrapped
in parenthesis:

public invariants
(SomeValue:SomeField = 0) : "SomeField may not be zero!";

Public vs. Private Invariants

Invariants can be marked either public or private.
Public invariants will be checked at the end of every non-private method call or property access, and if an invariant fails, an assertion is raised.
Private invariants will be checked at the end ofevery method call, including private methods.

The idea behind this separation is that that public invariants must be met whenever a call is made into the type from the outside. In other words, no
outside access to the type should ever leave the object in an invalid state.

However, there might be certain scenarios where a public method defers work to two or more private methods; the first of those calls might leave the
object in a partial state, which the second call then rectifies. If all invariants were checked at every step, this would be a problem.

You can think of private invariants as being most strict. Any time a method finishes, they must be satisfied to the TPublic invariants are more lax -
anything goes while the type does its work internally, eve across multiple methods. But when it is done and execution passes back to an outside caller,
these invariants too must be sorted out again.

Note that both types of invariant sections have full access to all private fields of the class, the only difference is the method (and property) calls they
apply to.

If a class specifies invariants, all fieldsmust be marked as private.

About Assertions

Note that like pre- and post-conditions, invariants will only be compiled and executed if the "Enable Asserts" Compiler Option is on. By default, this
option is off for Release builds, to optimize performance. It is important to not rely on invariants to execute for the regular operation of the project,
and to avoid conditions with side effects.

Pre- and post-conditions should be usedonly for testing, not for general code flow.

See Also

o Class Contracts

e Pre- and Post-Conditions in Methods
e implies Operator

e Assertion

Mapped Members

Inside Mapped Types, the mapped to Member Modifier can be used to mapMethods, Properties, Events, Constructors or Custom Operators to matching
members of the "real" underlying class.

This is essentially a shortcut to providing a method body or fullread/write statements for the property that would just contain a single statement.
Mapped members may not provide an implementation body:
type

MyMappedClass = public class mapped to SomeCollection

public

method Add(o: Object); mapped to addObject(o);
property Count: Integer; mapped to length;

end;
The two mapped members shown above would be equivalent to the following two regular implementations:

type
MyMappedClass = public class mapped to SomeCollection
public
method Add(o: Object);
begin
mapped.addObject(o);
end;
property Count: Integer read mapped.length write mapped.length;

end;
See Also

e Mapped Types
e mapped Expressions

Explicit Interface Implementations

When a Class or Record declares that it implements aninterface, the compiler will by default map members declared in the type to those required by
the interface, using name and signature:

type
IFoo = public Interface
method Bar;
end;

Foo = public class(IFoo)
method Bar; // automatically maps to IFoo.Bar
end;

Sometimes, this behavior is not desirable, and theimplements Member Modifier can be used to override it by explicitly providing a mapping from
members to their interface equivalent.

Explicitly Implementing Individual Members

Individual members can be mapped to an interface member that they don't match by name, by using thémplements modifier, combined with the name
of the interface and the name of the interface member it should be mapped to:

type
IFoo = public Interface
method Bar;
end;

Foo = public class(IFoo)

method Bar;

method Baz; implements IFoo.Bar; // explicitly maps to IFoo.Bar
end;

This can be be helpful in a variety of situations, for example if

e the type already contains a different member of the same name that is not related to the interface
o the type implements two or more interfaces that expect a member of the same name (but require different implementations)
o the name required by the interface does not make sense on the context of other members of the class, or could cause confusion

When an explicit mapping is provided, the member is accessible by its real name, when calling it on a reference of the type itself, and on via the
interface's name when calling it on an interface reference:

var f := new Foo();

f.Bar; // calls Foo.Bar
f.Baz; // calls Foo.Baz
var g: IFoo := f;

g.Bar; // calls Foo.Baz

Platform Considerations

Due to platform limitations, Explicit Interface Members are only supported on the.NET and Island platforms. On Cocoa and Java, interface members
must match in name.

Delegating the Implementation of an Entire Interface

The implements modifier can also be used to delegate the implementation of anentire interface to a different type stored in aField or Property of the
type. This can be helpful to reuse an existing implementation of an interface in multiple places, or to be able to "switch out" concrete implementations
of the interface at runtime (by assigning a different value to the field or property):

type
IFoo = public Interface
method Foo;
method Bar;
method Baz;
end;

Foo = public class(IFoo)
method Foo;
method Bar;
method Baz;

end;

MyClass = public class(IFoo)
public

var fFoo: Object; implements IFoo;
end;

In the above example, the Foo class provides a complete implementation ofIFoo. MyClass declares the interface as well, bu does not provide its own
implementation for the three methods. Instead, it delegates that implementation to the fFoo field.

var m := new MyClass();
m.Foo; // compiler error, Foo is not accessible here
(m as IFoo).Foo; // calls fFoo.Foo

By default, members from a deferred interface implementation arenot available on the type itself, but only through the interface. Optionally, a
Visibilty Modifier can be provided to make the interface members available on the class, as well:

MyClass = public class(IFoo)

public
var fFoo: Object; implements public IFoo; // members of IFoo are publicly available on MyClass
var fBar: Object; implements private IBar; / members of IBar are only privately available

end;

var m := new MyClass();
m.Foo; // now allows call to fFoo.Foo

Platform Considerations

Due to platform limitations, Deferred Interface Implementations on theCocoa and Java must specify visibility.

See Also

e Interface Types
e implements Member Modifier

¢ Interface Delegation in Mercury

Member Modifiers

Each member of a Class, Record or Interface can sport a range of modifiers that affect how the member works or is accessed.

Member Modifiers are provided after the; that closes the member declaration. Multiple modifiers can be provided, each followed by/separated by a
semicolon.

method Foo; virtual; private; empty; locked on fBar;
begin

end;

The order of modifiers has no relevance, but note that combinations of modifiers that would be contradictory or non-sensible (such asbstract;override;
or async;iterator;") are not permitted.

If an implementation for a method is provided in-line as part of theUnified Class Syntax, modifiers must be listedbefore the begin or require keyword
that starts the method body.

Virtuality Modifiers

The concepts of polymorphism and virtuality of members are shared between all type members, and across all Elements languages that support
classes. Please read more about this in the Polymorphism topic.

Methods, Properties, Events and (in a limited fashion)Constructors can take part in polymorphism, so the following modifiers are allowed on these
kinds of members.

e virtual — marks a member as virtual, so that descendent classes can override it.

abstract — marks a member as abstract. Abstract members cannot have an implementation (oread/write or add/remove statements, for properties
and events), and descendent non-abstract classes must to override the member.

override — marks a member as overriding a virtual or abstract event from the base class.

final — marks an overridden member as final, so that descendants cannot override it further.

reintroduce — indicates that the member replaces a member of the same name in the base classwvithout overriding it or participating in
polymorphism.

.

o o o

method OverrideMe; virtual;

Visibility Modifiers

Each member can be marked with an individualVisibility Level that overrides the level set by the visibility section it is defined in (if any).
Please refer to the Member Visibility Level topic for a detailed description of visibility levels.

method VerySecret; private;

Static Members

By default, members are considered to be defined on theinstance of a type. That means that an instance is needed to access them, and any changes
they make will affect that instance.

Methods, Properties, Events, Fields and Constructors can optionally be marked as static, which means they can be accessed without reference to an
instance and (in the case of properties, events and fields) their state is shared globally, as a single copy for the entire type.

A member can be marked as static by applying thestatic modifier (or, for backward compatibility, by prefixing it with theclass keyword):

method MyClassMethod: String; static; // static method on the class itself
class method MyOtherClassMethod: String; // also a static method on the class itself

Other Modifiers

The following additional modifiers are supported for various member types. Note that (with the exception ofisync), all modifiers marked as available
"for methods only" apply to all method-like members, including Constructors and Operators.

e async — (Methods only) marks a method as running asynchronously from the caller. When called, an asynchronous method returns control to the
caller immediately, while the actual processing happens in the background. Asynchronous methods cannot have var or out parameters, and if
they return a value, that value will be returned to the caller in form of a Future. On .NET, asynchronous methods are also compatible with the
await keyword. See also Async Expressions.

e copy — (Properties only) marks the property with the "Copy" meta-flag, forCocoa.

o default — (Properties only) marks the property to be (a) defaultindexer Property for the containing type.

« deprecated — marks the member as "deprecated", and causes a warning to be emitted if it is accessed from code. An optional constangtring
message can be provided.

e empty — (Methods only) marks the method as containing no code. A method marked asempty cannot have an implementation body. In contrast
to abstract methods, empty methods can be called safely at runtime, they just perform no action.

o external — (Methods and Fields only) marks a method as being a declaration for a method or function that is linked in from an external library.
Usually used in combination with the [Dilimport] aspect to define a method that calls, for example, a native .dIl on .NET. No implementation body
may be provided.

¢ implements ISomelnterface.SomeMember — indicates that the member implements the given member of an interface, even though it may not
match that method in name. See Explicit Interface Implementations.

e implements ISomelnterface — (Properties and Fields only) indicates that the member points to a type that provides an implementation for the
whole interface. See Explicit Interface Implementations.

o inline — (Methods only) marks the method to be compiled as inline. This means that no actual distinct method will be emitted into the
executable, instead the code of the method will be inserted inline wherever the method is called. This can provide small speed improvements
when used on simple but often-called methods. Inlined methods cannot participate in Polymorphism or in dynamic method dispatching at
runtime.

o iterator — (Methods only) marks the method as anlterator method that returns a dynamically generated sequence of items.

e lazy — (Properties only) in combination with an initialization value for the property, this will make sure that the initial value is only calculated if
and when when the property is first accessed (opposed to as part of the class's instantiation). Lazy properties can be readonly or read/write, but
must have an initialization expression. When a lazy property is written to before it's first read, the initial value is not evaluated at all. The
accessors for Lazy properties are thread safe.

e locked — makes sure that all access to the method is thread safe and synchronized, so that only one single thread can execute the method at a
time. See also Locking Statements.

¢ locked on Expression — optionally provides an expression that will be used to synchronize the access.

e mapped to — (Mapped Types member only) marks the member to be mapped to a member in the original class.

* notify — (Properties only) will cause the property to emit platform-specificNotifications when the property is changed. See alsoProperty
Notifications.

« optional — (Interface members only) marks the member as optional, on theCocoa platform.

e partial — (Methods only) marks the method for special behavior inside aPartial Type as discussed in that topic. Often combined withempty.

* readonly — (Properties and Fields only) marks the member as read-only, so that it can only be assigned from the constructors or via an initializer,
and is immutable from that point on (both internally within the defining type and externally).

* raises — adds a Java Throws Definition to declare that the member can raise exceptions. It can optionally be followed by a comma-separated list
of Exception type names. (Available on theJava platform only.)

« unsafe — marks a member as using"unsafe" code, such as direct pointer manipulation, on a managed platform. (Available on.NET only.)

o where — provides Constraints on Generic Methods or Properties.

« volatile — (Fields only) marks the field as volatile, meaning it is safe to be changed from multiple threads at once. A field marked as volatile
won't be optimized by the compiler or runtime in optimizer phases that assume single-threaded access. Each access of the field will always
read/write directly from/to memory, bypassing any caching. It also guarantees that only one CPU core at a time reads or writes this field at a
given time.

Legacy Modifiers

The following additional modifiers are supported for various member types. Note that (with the exception ofisync), all modifiers marked as available
"for methods only" apply to all method-like members, including Constructors and Operators.

e forward — (Methods only) marks a Forward Declaration.

See Also

e Member Visibility Level
e Polymorphism

Member Visibility Levels

Each member of a Class or Record (and, to a limited degree, Interface) has a visibility level that controls which portions of your (or external) code have
access to the member.

The following keywords and keyword combinations can be used to introduce a new visibility section that all subsequent members will fall into.

« private — only accessible from other members of this same type.
e unit — only accessible from within the same file.
* unit or protected — only accessible from this type, a subclass or within the same file.

unit and protected — only accessible from this type, a subclass that is within the same file.

assembly — only accessible from within this project.

assembly or protected — only accessible from this type, subclasses or any code within the same project.
assembly and protected — only accessible from this type and subclass that are within the same project.
protected — only accessible from this type or subclasses.

public — accessible from everywhere.

published — accessible from everywhere, and excluded from linker optimizations.

® o o o o o o

All of these visibility levels are available members ofClasses or Records. Members of Interfaces are public by default, but under certain conditions,
private interface members are permitted, as well.

The unit, assembly and public visibility levels are also available for types themselves.

The published visibility level behaves identical to public, on a conceptual level. On platforms that use thelsland compiler back-end, published will exclude
the members from linker optimization, making sure they are included in the final executable as part of the type, even when not directly used. Similar
behavior can be achieved with the [Published] and [Used] Aspects.

Oxygene has provides two ways to specify this visibility:

Visibility Sections

Traditionally, visibility is defined by thevisibility section that the member is declared in. Every occurrence of a visibility specifier from the table below
will initiate a new section, and all members that follow with share that visibility. The default visibility is assembly, so any members declared before the
first visibility specifier are accessible from the entire project.

type

MyClass = public class
method A; // method A and B are "assembly" visible, as that is the default
method B;

protected
method C; // method A and B are "protected"
method D;

public
method E; // method A and B are "public”, visible outside of the project
method F;

end;

Visibility Modifiers

Alternatively, visibility levels can be specified on individual members, using the visibility specifier asModifier on the member. A visibility modifier
overrides whatever section the member is defined in, and affects the visibility of the individual member only.

This syntax is useful to keep related members close together, regardless of visibility - especially when using the newetUnified Class Syntax.

type

MyClass = public class

public
method A; // method A, B, D, E and F are all "public"
method B;
method C; private; // method C is private.
method D;
method E;
method F;

end;

See Also

Member Modifiers

Type Visibility Modifiers
Private Interface Members
[Published] Aspect

[Used] Aspect

e o o o o

Statements

Statements are the meat and bone of your application - they are the actual code that executes and determines application flow and logic. Without
statements, an Oxygene application would not be able to do anything.

Statements are usually written in Methods and other method-like members (such asConstructors or Finalizers), which provide a body that contain
zero, one or more statements.

Statements can be standalone individual lines of code (such as a variable declaration with thevar keyword), include a sub-statement (such as for loops,
exit statements orasync expressions), or they can be so-called block statements and contain a whole nested block (such as thebegin/end block
statement or the repeat/until block loop statement.

Aside from statements provided via Oxygene language constructs,Method Calls are probably the most commonly used type of statement (technically,
expression) in an object oriented language such as Oxygene.

Please refer to the nested topics listed in the sidebar on the left for a complete reference of available statement types.

Expressions

Expressions, covered separately in their own sectionhere, are a special sub-type of statement that represent a value.

As a result, expressions can usually be used in the same way a regular statement is (and causing the expression's value to be ignored), but they can
also be used in many other places where a value is expected — for example as parameters to method calls, or as parts of more complex expressions.

var x := CalculateValueA() + CalculateValueB(); // each method call is an expression,
// as is the + operation of the two results

CalculateValueB(); // result of the method call will be ignored
// here expression is treated as a plain statement

Separating Individual Statements

In Pascal, individual statements within a method or nested in a block statement areseparated by semicolons (). This means that (different from C#,
Java or Objective-C, where statements are terminated with a semicolon), no semicolon is needed after the last statement or after a single statement.
However, for convenience and consistency, it is common practice and recommended in Oxygene to provide a closing semicolon, even if not strictly
required.

begin

DoSomething();

DoSomethingElse(); // this last semicolon is not strictly needed
end;

begin/end Block Statements

In any place where an individual statement is expected, thebegin/end block statement can be used to wrap a whole bunch of separate statements
together and treat them as a single statement.

For example, theif/then statement expects a single sub-statement after thethen keyword, which will be executed if the condition preceding it evaluates
to true. But it can easily be extended to conditionally execute a whole list of statements, when combined with begin/end. Technically speaking, the
begin/end is not part of theif/then statement's syntax.

if x = 0 then DoSomething; // if expects only a single sub-statement...

if x = 0 then begin // ...but a begin/end statement can be used for that single
DoSomething; // statement, allowing to conditionally execute a whole list
DoSomethingElse;

end;

This same principle applies anywhere a statement is allowed, for example as sub-statement taofor and while loops.

You can read more about begin/end block statements here.

All Statements

e Assignments (:=)

e begin/end Blocks

e break Statements
o case Statements

e continue Statements
o exit Statements

e for Loops

o if/then/else Statements
e locking Statements
e loop Infinite Loops
¢ raise Statements
e repeat/until Blocks
e try Blocks

e using Statements
o while Loops

« with Statements

e yield Statements

Declaration Statements

e const Declarations
¢ method Declarations
L]
L]

property Declarations
var Declarations

Expressions that can be Used as Statements

async Expressions
await Expressions
constructor Calls
Method Calls

new Expressions

Begin/End Block Statements

The begin/end statement is a block statement that does not perform any logic or functionality in itself, but is used to group two or more statements
together so that they can be treated as a single statement - usually in a context where a single statement is expected.

e o o o o

For example, the if/then statement expects a single sub-statement after thethen keyword, which will be executed if the condition preceding it evaluates
to true. Using a begin/end pair, a whole block of statements can be tied to the condition instead. Technically speaking, thebegin/end is not part of the
if/then statement's syntax:

if x = 0 then
DoSomething; 1/ if expects only a single sub-statement...

if x = 0 then begin // ...but a begin/end statement can be used for that single
DoSomething; // statement, allowing to conditionally execute a whole list
DoSomethingElse;

end;

The following lists all statement and expression types that can be used in combination with an (optional)begin/end block:

if/then/else statements, as well as their else clause
for/do loops

while/do loops

Infinite loops with the loop keyword

Individual clauses in a case statement

locking statements

using statements

e o o o o o o

e with/do statements
e async expressions
e Lambda expressions

By contrast, the following block statements already enclose a list of statements they act upon and daiot require an explicit begin/end pair to act upon
multiple statements at once:

e repeat/until block loops
o try/except/finally Exception Handling blocks

Statements vs. Expressions

Like all statements, begin/end blocks can only be used in a context where a plain statement is expected. They can not act as expressions, because they
only represent a bunch of statements to be executed, but not a resulting value. Conversely, begin/end blocks can not be used in the following
constructs:

e exit oryield statements

e As condition for if/then, while/do and repeat/until loops
L]

L]

As loop expressions in for loops
As expression for with, locking or using statements

Async Expressions and begin/end

async expressions are special in that theyare expressions, but can take either an expression or a plain statement to be run asynchronously. When
applied to a statement (as would be the case when using begin/end), the async keyword results in an expression of a type-lessFuture, also referred to as
a Void Future.

You can read more aboutasync expressions here.

Standalone begin/end Block Statements

Since begin/end blocks introduce no behavior or logic of their own, they can of course be also used to group one or more (technically, zero or more)
statements at any place in code where a statement is allowed, even when not used in the context where the grouping is necessary to pull the
statements together.

The following code snippet shows three statements, the second of which is abegin/end block that itself contains two statements. This is valid, even
though the begin/end pair has no effect, and the code would perform the exact same action without it.

Console.Write('hello');
begin
Console.Write(' to');
Console.Write(' the');
end;
Console.WriteLine(* world')

If/Then/Else Statements

The if/then statement is a conditional statement that executes its sub-statement, which follows thethen keyword, only if the provided condition
evaluates to true:

if x < 10 then
X 1= x+1;

In the above example, the condition isx < 10, and the statement to execute isx := x+1. As such, the code will incrementx by one only if its current
value is still less than 10.

else clause

Optionally, an else clause with a second sub-statement can be provided. This second statement will be executed instead of the first one if the condition
was false. It is always guaranteed that one of the two statements will execute:

if x < 10 then
X :=x+1
else

X 1= x+10;

In the above example, the code will incrementx by one if its current value is still less than 10, as before. However, ik is already 10 or larger, it will be
incremented by 10 instead.

A Note on Semicolons

Note how the second example above hasno semicolon (;) after the first statement, the one that will execute if the condition is true. that is because in,
in Oxygene semicolons are used to separate statements, not terminate them.

Technically speaking, the semicolon on the first code snippet does not belong to the innemx := x+1 statement. Instead, it separates the entireif/then
statement from whatever may come after it. In the second example, the entire if/then/else statement does not end until after the fourth line, so that is
the first place a semicolon is valid.

One could argue that it should not be present in the code example at all - however, Oxygene convention is to write the trailing semicolon after each
statement, even single ones, and that's why the snippet included it.

if/then Statements and begin/end blocks.

On its own, the if/then statement, as well as its optionalelse clause, only takes a single statement to be executed for each of the two cases. To execute
more than one statement, multiple statements can be grouped using a begin/end Block Statement:

if x < 10 then begin
X = X+1;
writeLn(‘increased by 1.');
end
else begin
X 1= x+10;

writeLn(‘increased by 10.');
end;

Optionally, a begin/end statement block can be used, even if only a single statement is provided. This is common practice to keep code clean and
readable, and to avoid the common mistake of forgetting to add begin/end when later expanding a single-statementif/then statement.

It is also common practice and highly recommended to either consistently use or not use abegin/end pair for both thethen and the else statement, even
if not necessary. It helps to keep code balanced.

if x < 10 then begin
X = X+1;
y:i=y+1;
end
else
X := x+10; // feels unsymmetrical with the 'then' block above

if x < 10 then begin
X 1= x+1;
y:=y+1;
end
else begin
x := x+10; // balances nicely, even if the 'begin/end' is unnecessary here.
end;

Nullable Conditions

The condition expression for theif/then statements must be ofBoolean or Nullable Boolean type.

If the condition is a simple boolean, theif/then statement will execute thethen clause if the condition is true, and the (optional)else clause if the
condition is false.

If the condition is a Nullable Boolean type, then the additional case of the condition evaluating tonil needs to be considered. While anil nullable
boolean strictly speaking is not equivalent to false, the if/then statement treats them the same, and will execute theelse clause, if provided, in this
case.

This behavior symmetrically extends to while/do loops, which also treat a nil condition as false and will exit the loop, whilerepeat/until loops will treat a nil
condition as false and keep running the loop.

See Also

e begin/end Block Statements

o if/then/else Expressions
e Nullable Types

Loop Statements

Loop statements are used to perform the same action, or variations of the same action, multiple times in a row. As such, they form an important part
of every programming language.

Oxygene provides four core types of loops:

o for loops iterate over a given set of data, be it a sequence of objects or a range of numbers with a well-defined start and end point.

o while/do loops keep iterating while a certain condition is true, re-evaluating the condition each time the loopbegins. They might run zero or more
times.

« repeat/until loops keep iterating until a certain condition is false, re-evaluating the condition each time the loopends. They always run one or
more times.

e loop loops, also referred to as Infinite Loops, run indefinitely, until they are broken out of using either areak, exit or raise statement.

Labeled Loops

Loop statements can be prefixed with an optional name, separated form the loop keyword by a colon. When such a name is provided, it can be used in
continue and break flow control statements to more precisely control which loop to cpntinue or break out of.

vari:=0;
I0uterLoop: while i < 30 do begin
=i+ 1;

for j := 0 to 20 do begin
if i*j = 150 then continue |OuterLoop; // contine the OUTER loop
writeLn(i*j);
end;
writeLn(i);
end;

Version Notes

e Labeled loop statements are new inVersion 8.2.

For Loops

A for Loop is a loop that iterates over a predefined set of numbers, or a pre-defined set of values in &equence, and executes a statement or a block
of statements once for each value. An iterator variable is defined and maintained by the loop, allowing each iteration access to the value that it is
asked to operate on.

There are two basic types of For Loops: for/to loops that iterate over a range of numbers, andfor/in loops (also referred to asfor each loops) that iterate
over items in a Sequence.

for/to Loops

A simple for/to loop uses the following syntax:

fori:=0to 10 do

DoSomething;

The For loop always introduces its own variable for the loop, even when a variable of the same name is already defined in the outside scope. This is
different from legacy Pascal dialects, which uncleanly allow the reuse of a variable (often with undefined results) before and after the for loop itself.

The type for the loop variable will be inferred from then start and end value, but can also optionally be specificed explcitly:

for i: Integer := 0 to 10 do
DoSomething;

Steps

By default, a for/to loop iterates over each value from the start to the end in increments ofl (one). Optionally, the steps keyword can be used alongside
a different increment. If specified, the loop will iterate in larger steps, in the example below only running the loop for every other number.

fori:=0to 10 step 2 do
DoSomething();

If the step size does not cause the loop counter to exactly reach the end value of the loop, the loop will end with the last iteration that is smaller than
the end value. For example, the code below will iterate across 0, 3, 9, and then stop. It will hit neither10 nor 12.

fori:=0to 10 step 3 do
DoSomething();

The range can be specified as a constant or as a dynamic expression, but (unlike in C# and many other languages) the end value will only be
evaluated once, at the beginning of the loop. Changes to the step count or the loop range from inside the loop will have no effect on the duration of
the loop.

Backwards Loops

A for loop can also be made to count downwards instead of upwards, by replacing theo keyword with downto, as shown here:

fori:= 10 downto 0 do
DoSomething();

Note that it is up to the developer to ensure that the start and end value have the proper relationship to each other (i.e. start being smaller than end
for a to loop, and higher than end for adownto loop), otherwise the loop may run through the full range of the Integer type and will "wrap around" when
it reaches the type's minimum or maximum range.

for/in Loops

for/in (or for each) loops are a second variation offor loops. Rather than iterating over a range of numbers, they iterate over all elements of &equence
or sequence-compatible type (such as an Array).

A simple for/in loop uses the following syntax:

for each i in list do
DoSomething();

where list can be any sequence of values.

By default, the type for the iterator variablei is usually inferred from the type of sequence, but just as withfor/to loops, it can also be specified
manually, using the expected syntax:

for each i: String in list do {...}

When specified, the compiler will enforce that the declared type matches the type of the sequence and emit an error if it does not match (for example
if, in the example above, list was a Integer, not assignment compatible with String).

For legacy reasons, theeach keyword is optional and can be omitted, although we encourage to use it.
Matching

As a variation on this, the optional matching keyword can be used, along with an explicitly specified type name, to limit thefor loop to only run for those
items of a sequence that match in type. This is helpful if you have a sequence of a certain base type, but only want to iterate over the items of a
specific descendant type. For example:

var list: sequence of Control;
for each matching b: Button in list do
DoSomething();

Here, list is a sequence that could contain any sort ofControl (a made-up class) type. But the loop will only execute for those controls that actually are
of type Button.

Indexes

Sometimes it is useful to keep count of the iterations of the loop in @ numerical way, even iror/in loops. For example, when rendering a list of items,
one might want to use different colors for even vs. odd items.

While it is of course possible to manually define and increment a counter variable, Oxygene provides an enhancement to theor loop syntax to take
care of this:

for each s in list index i do
DoSomething(s);

In this example, s remains the loop iterator, and will contain the values obtained from the sequence as the loop progresses. At the same timej is
introduced as a second loop value of type Integer and will be incremented with each iteration.

Omitting the Loop Variable

Sometimes it is useful to just lopp over a collection without need to access the actual elements. In this case, anil Dicardable can be used for the loop
variable, or it can be omitted altogether:

for each nil in list do
DoSomething();

or simply:

for each in list do
DoSomething();

This can avoid "variable is ot used" warnings.

for each from Shortcut Syntax

Oxygene provides shortcut syntax for combining afor/in loop and a from query expression.

The normal syntax for using an expression inside a for loop would look like this:

for each i in (from i2 in myList where i2 > 5) do
DoSomething();

Note how an extra variable needs to be defined inside the clause that, in essence, represents the same element as the outer loop variable.
You can write the same in a more natural way, by combining the iterator variable and the query expression variable into one:

for each from i in myList where i > 5 do
DoSomething();

Prematurely Exiting the Loop or a Loop Iteration

Like all loops, for Loops can be exited prematurely using thebreak and exit statements and raise, and a single loop iteration can be cut short by using
the continue statement, which jumps to the next loop iteration.

Parallel Loops

It's possible to process the body of the loop in parallel, usually leveraging multiple threads and CPU cores.
A for loop can be turned parallel simply by adding the keyword to it, as shown below:

for parallel i := 0 to 10 do
DoSomething();

Using this syntax, the individual iterations of the loop are automatically spread over multiple threads and CPU cores. But this is done smartly, and in a
way that leverages core OS resources to distribute the load onto a number of threads that makes sense for the current hardware. A loop of 1000 items
will not just create a thousand threads, which would be terrible for performance. Instead, the number of threads and how to create them will be
handled at runtime by the OS, and take into account factors such as the number of available CPU cores and overall load on the system at the time.

This is true for all Parallelism features in Oxygene (and Elements in general).

Although the loop will execute individual iterations asynchronously (and,nota bene, not necessarily in a predetermined order), the loop itself does not
finish and pass execution to the code that follows it until all iterations are complete.

If an exception occurs in any one of the iterations, the loop is canceled, finishing the currently running iterations. The exception(s) will be wrapped in a
new exception that will be re-thrown in the context of the original code and thread.

The use of exit is not allowed in parallel for loops. The break keyword can be used, and will stop the loop from starting up further iterations, but (similar
to the exception behavior described above), any iterations already running will continue until they completed. The continue keyword will work as
expected, as it only affects the current iteration.

Limitations of Parallel Loops

Parallel For Loops support both for/to and for each loop types. However, the downto and step syntaxes are currently not supported.

for Loops and begin/end blocks.

On its own, the for loop only takes a single statement to be executed for each iteration. To execute more than one statement, multiple statements can
be grouped using a begin/end Block Statement:

for i: Integer := 0 to 10 do begin
DoSomething();
DoSomethingElse();

end;

See Also

Loop Statements
Flow Control Statements

begin/end Block Statements

while/do and repeat/until loops

loop loops, also referred to as Infinite Loops
Parallelism

Sequence

While/Do Loops

The while/do loop is a loop that executes a statement or a block of statements repeatedly, as long as a given condition evaluates tarue. The condition
will be re-evaluated at the beginning of each iteration of the loop, allowing code inside the loop to affect the condition in order to terminate it.

e o o o o o o

Since the condition is evaluated before the loop is entered, it is possible for awhile/do loop to never be executed even once, if the condition is already
false when execution arrives at the loop.

As an alternative to thewhile/do loop, the repeat/until block loop will evaluate a condition at theend of each iteration, thus providing a loop that is
guaranteed to be entered at least once.

Syntax

The basic syntax for a while/do loop looks like this:

while x < 10 do

DoSomething();

where a conditional expression is specified between thewhile and do keywords, and thedo keyword is followed by the statement that is to be executed
repeatedly.

Nullable Conditions

The condition expression for the while/do loop must be ofBoolean or Nullable Boolean type.
If the condition is a simple boolean, thewhile/do loop will execute as long as the condition evaluates to true.

If the condition is a Nullable Boolean type, then the additional case of the condition evaluating tonil needs to be considered. While anil nullable
boolean strictly speaking is not equivalent to false, the while/do loop treats them the same, and will stop executing the loop if the condition evaluates to
either nil or false.

This behavior symmetrically extends to if/then statements and repeat/until loops, which also treat a nil condition as equivalent to false.

while/do Loops and begin/end blocks.

On its own, the while/do loop only takes a single statement to be executed for each iteration. To execute more than one statement, multiple statements
can be grouped using a begin/end Block Statement:

while x > 10 do begin
DoSomething();
DoSomethingElse();
end;

Prematurely Exiting the Loop or a Loop Iteration

Like all loops, while/do loops can be exited prematurely using thebreak and exit statements, and a single loop iteration can be cut short by using the
continue statement, which jumps to the next loop iteration.

Matching

As a variation on the while loops is the optional while matching variant. a while matching loop introduces a new variable and initialization condition, and
keeps running while that variable remains non-nil. See als the for each matching loop type, for reference.

For example:

whlle matchign lltem := Nextltem do
DoSomething(litem);

The while matching loop will execute until Nextitem returns nil. Essentially, it's a more convenient way of writing:

var litem := Nextltem;

while matching litem := Nextltem do begin
DoSomething(llitem);
litem := Nextltem

endl|

See Also

Loop Statements
Flow Control Statements

begin/end Block Statements

for and repeat/until loops
loop loops, also referred to as Infinite Loops

e o o o o

Repeat/Until Block Loops

The repeat/until loop is a loop that executes a block of statements repeatedly, until a given condition evaluates tarue. The condition will be re-
evaluated at the end of each iteration of the loop, allowing code inside the loop to affect the condition in order to terminate it.

Since the condition is evaluated at the end of each iteration, arepeat/until loop will always be executed at least once, even if the condition is already
true when execution arrives at the loop.

As an alternative to therepeat/until block loop, the while/do loop will evaluate a condition at the start of each iteration, thus providing a loop that can
skip even the first iteration.

Syntax

The basic syntax for a repeat/until loop looks like this:
repeat

DoSomething();

DoSomethingElse();
until x = 10;

where a conditional expression is specified after the closinguntil keyword, and a list of statements can be provided between therepeat and until
keywords.

Nullable Conditions

The condition expression for the repeat/until loop must be ofBoolean or Nullable Boolean type.
If the condition is a simple boolean, therepeat/until loop will execute as long as the condition evaluates tofalse (in other words until it is true).

If the condition is a Nullable Boolean type, then the additional case of the condition evaluating tonil needs to be considered. While anil nullable
boolean strictly speaking is not equivalent to false, the repeat/until loop treats them the same, and will continue executing the loop if the condition
evaluates to either nil or false. Only a value oftrue will terminate the loop.

This behavior symmetrically extends to if/then statements and while/do loops, which also treat a nil condition as equivalent to false.

repeat/until Loops and begin/end blocks.

Unlike most other statements, and all the other loop types, therepeat/until loop is a block statement, and encloses a list of statements, rather than
looping an individual statement. As such, a separate or explicit begin/end block statement is not necessary in order to execute a loop with two or more
statements.

Prematurely Exiting the Loop or a Loop Iteration

Like all loops, repeat/until loops can be exited prematurely using thebreak and exit statements, and a single loop iteration can be cut short by using the
continue statement, which jumps to the next loop iteration.

See Also

Loop Statements

Flow Control Statements

begin/end Block Statements

for and while/do loops

loop loops, also referred to as Infinite Loops

o o o o o

Infinite Loops

An infinite loop is a loop that executes a statement or a block of statements repeatedly, without a guarding condition to determine its end (such as the
while/do and repeat/until loops or a pre-defined set of items to loop over, like thefor loop).

An infinite loop will run indefinitely, until it is explicitly broken out of using either areak, exit or raise statement.

The syntax for an infinite loop is simply theloop keyword, followed by the statement to be repeated:

loop DoSomething();

Infinite Loops and begin/end blocks.

On its own, the infinite loop only takes a single statement to be executed for each iteration.

Given the need to eventually break out of the loop with abreak or exit statement, the infinite loop is almost always used in combination with abegin/end
block statement to allow the execution of multiple statements for each iteration:

loop begin
DoSomething();
DoSomethingElse();
if DoneSomethingThird then
break;
end;

Prematurely Exiting the Loop or a Loop Iteration

Like all loops, infinite loops can be exited prematurely using thebreak and exit statements, and a single loop iteration can be cut short by using the
continue statement, which jumps to the next loop iteration.

See Also

Loop Statements

Flow Control Statements
begin/end Block Statements
for and while/do loops
repeat/until loops

o o o o o

Flow Control Statements

Flow control statements can be used to take charge of the execution flow on a method or block of code and direct it to jump to a different place in the
application, rather than continuing through to the text statement linearly.

e The continue and break flow control statements are used solely insideloops, and will terminate the current iteration or the whole loop,
respectively.

e The exit flow control statement can be used almost anywhere, and will completely exit out of the current method - optionally providing a return
value for the method, as well.

e The raise flow control statement will raise anException that will terminate the current flow of execution and will bubble up the call stack until it is
"caught" by a [try/except] block.

e The yield statement is strictly speaking not a flow control statement; it will provide a value to return while generating asequence, but execution
will continue linearly after it.

Also:

e The goto statement, while not recommended for common use, can redirect execution to continue at an arbitraryLabeled Statement within the
same scope.

Break Statements

The break flow control statement breaks out of the currentloop and lets execution resume on the first statementafter the loop, forgoing any further
iterations.

vari:=0;
loop begin

i=i+1;

if i = 15 then break; // exit the loop when we hit 15
end;

Labeled Loops

If the loop is labeled with a name, that name can be used alongsidebreak to be more explicit about which loop to beak out of. This is especially helpful
when using nested loops:

vari:=0;
|OuterLoop: loop begin
i=i+1;

for j := 0 to 20 do begin
if i*j = 150 then break IOuterLoop; // exit the OUTER loop
end
end;

See Also

Flow Control Statements

for loops

while/do loops

repeat/until loops

loop loops, also referred to as Infinite Loops
continue statements

exit statements

Labeled Statements

e o o o 0o o o o

Continue Statements

The continue flow control statement breaks out of the current iteration of aloop and lets execution resume with the next iteration of the loop,
presuming there are further iterations left to complete.

vari:=0;

while i < 30 do begin
=i+ 1;
if i = 15 then continue; // skip the following code for "15" only
writeLn(i);

end;

Labeled Loops

If the loop is labeled with a name, that name can be used alongsidebreak to be more explicit about which loop to beak out of. This is especially helpful
when using nested loops:

vari:=0;
IOuterLoop: while i < 30 do begin
i=i+1;

for j:= 0 to 20 do begin
if i*j = 150 then continue |OuterLoop; // continue the OUTER loop
writeLn(i*j);
end
writeLn(i);
end;

See Also

Flow Control Statements

for loops

while/do loops

repeat/until loops

loop loops, also referred to as Infinite Loops
break statements

exit statements

Labeled Statements

e ® o o o o o o

Exit Statements

The exit flow control statement will terminate the execution of the current method and directly exit back to the code that called it.

If the current method has a result type, thenexit can optionally provide a return value that will be passed back to the caller. If such a value is provided,
it will replace whatever value may already be stored in the result variable. If exit is invoked without a return value, any value already stored inresult will
be returned.

Invoking exit will break out of anyloops and skip executing any further code that is written as part of the current methodexit will honor any code
provided in finally sections.

Examples

method Test: String;
begin

writeLn(‘Hello');

result := 'Hello’;

exit;

writeLn('This line won"t run');
end;

method Test2: String;
begin

writeLn(‘Hello');

exit 'Hello';

writeLn('This line won"t run');
end;

method Test3;
begin

writeLn(‘Hello');

exit;

writeLn('This line won"t run');
end;

See Also

e Flow Control Statements
e Labeled Statements

Raise Statements

The raise flow control statement will terminate the current scope by raising (or re-raising) anexception. The exception will bubble up the call stack,
terminating all execution flow, until it is caught by a try/except block.

The raise keyword can be used in two ways.

Typically, raise is followed by an expression that provides an exception instance. That instance (typically of typ&xception or a sub-type, butany Object
can be raised, in theory) will travel up the stack, and will be available to all exception handlers, providing details about the exception that occurred.

Inside a try/except block, the raise keyword can be used on its own; it will the re-raise the exception currently being handled.

raise new ArgumentException(‘Invalid parameter!');

See Also

e raise Expressions
o Flow Control Statements

Goto Statements

The goto flow control statement can redirect execution to continue at an arbitraryLabeled Statement within the same scope.
goto is supported for legacy reasons, but should generally not be used in regular code, as most logic flow is better expressed using propekoop
Statements.

Examples

writeLn('Hello');

if x > 5 then
goto Here;

writeLn('x is five or less');
Here: begin

writeLn(‘World');
end;

See Also

o Flow Control Statements
o Labeled Statements

Assign Statements

The assign statements - expressed as:=, a colon followed by an equal sign - assigns the value of the expression on right to thewritable expression on
the left.

X :=5;
After the above statement, x has a value of5.

Different from most other languages, Pascal and Oxygene purposely do not use the equal sign for assignment, to highlight the active nature of the
statement - it is not expressing equality, but transferring a value (even if the end result - usually, but not always - is equality of the left and the right).

The left side of the assign statement must be awritable expression, while the right side can be any kind ofExpression.
Writable expressions include:

Local variables

Field Access

Property Access

The result of the current method
Indexers for indexer properties or arrays
Discardables (nil)

Tuple Literals

e o o o o o o

Note that in particular forProperties with custom setter code, and forDiscardables, the end result of an assignment isnot necessarily equality. For
example, a property setter (or getter) code might modify the actual value.

Other uses of the := Operator

The assignment operator can also appear in other statements that are not stand-alone assign statements such as:

var Declaration Statements with an initializer
Field and Property declarations with an initializer
Default Parameter values forMethod declarations
Property Initializers in new Expressions

for/to loops

e o o o o

e using statements
e with statements

Notably, Consts use the = operator to specify their value, and not :=, since for constants, equality between the constant and the literal it is being
initialized with is guaranteed, and a fundamental part of what makes them constants.

See Also

o var Declaration Statements with an initializer
o Writable Expressions

Try Block Statements

A try statement surrounds a protected block that receives special treatment when anException occurs during its execution, whether in thetry block
itself, or any other code that is called from within the block.

Two types of handler sections can be provided at the end of thetry block, to determine what happens when an exception occurs:finally and except. Any
individual try block can specify either or both of these sections, and in either order.

Finally Sections

A finally section can provide code that willalways execute, whether an exception occurs or not. Recall that normally an exception terminates all
execution flow on the current thread, terminating the current method, and its callers, until the the point where the exception is handled. Code inside
the finally section is an exception (pardon the pun) to that.

Finally sections are useful for cleanup code that must be ensured to run even in case of exceptions - for example to close unmanaged resources such
as an open file:

try
DoSoemthing;
MaybeThrowsAnException;
DoSomethingMore;

finally
Cleanup;

end;

AndDoYetMore;

In this example, Cleanup would always be called, even ifMaybeThrowsAnException indeed does throw an exception.DoSomethingMore and AndDoYetMore of
course are not.

Except Sections

By contrast, an except section will only run if an exception occursand it will handle (or "catch") the exception, so that execution flow will continue
normally as if nothing happened:

try
DoSoemthing;
MaybeThrowsAnException;
DoSomethingMore;
except
writeLn("An error occurred");
end;
AndDoYetMore;

In this example, the writeLn would only be called if MaybeThrowsAnException (or any other code in thetry block) does throw an exception. Since the
exception is then considered handled, AndDoYetMore would be called as well.

Inside the except block, one or more on/do clauses can be provided to filter for specific exceptions. Note that theexcept block can either contain regular
code statements or on/do clauses, but not mix both:

try

DoSoemthing;

MaybeThrowsAnException;

DoSomethingMore;
except

on E: FileNotFoundException do

writeLn("Can't load that file. moving on without");

end;
AndDoYetMore;

In this case, the except block only handles the exception if it is of the right type. Any other exception will continue to bubble up the call stack.

Multiple on/do clauses are allowed, and an optionalwhere condition can be used to filter exceptions on criteria other than their type. Note that only the
first clause that matches a given exception is executed, and the exception is only considered handled if it did match one of the clauses:

try
DoSoemthing;
MaybeThrowsAnException;
DoSomethingMore;
except
on E: FileNotFoundException do
writeLn("Can't load that file. moving on without");
on E: HttpException where E.Code = 404 do
writeLn("Can't load that webpage. moving on without");
on E: HttpException do
writeLn("Different web error");
end;
AndDoYetMore;

Here, both FileNotFoundException and HttpException types are caught, with a different handler being run depending on the error code in theHttpException.
Any other exception will continue uncaught.

Re-raising Exceptions

Inside an except section, code may decide to not handle the exception after all, and to re-raise it. This can be done by using theaise Statement or a

raise Expression on its own, without specifying a new exception expression:

except
on E: FileNotFoundException do
if FileName = "Reallylmortant.txt" then
raise;
writeLn("Can't load that file, but it seems unimportant...");
end;

Note that using raise without an expression will let the current exception continue untouched, preserving all its information, including the original call
stack. Using raise E or even raise new Exception(...) would instead raise the (or a new) exception fresh, losing the history.

Combining finally and except

Both finally and except sections can be combined within a singletrt block. In case of an exception, they will be run in the order they have been specified:

try
DoSoemthing;
MaybeThrowsAnException;
DoSomethingMore;
finally
Cleanup;
except
writeLn("An error occurred, but we cleaned up fine.");
end;
AndDoYetMore;

See Also

e Exception Handlin

e Exception base type
o raise Statements and raise Expressions

Case Statements

The case statement splits code flow, and executes one (or none) of several optional code paths, based on the value of the provided expression:

case value of

1: writeLn(‘One');

2: writeLn(‘Two');

6..9: writeLn('Between six and nine')

else writeLn($'Unexpected value: {value}');
end;

The expression provided between case and of can be of any type that can be compared to constant or literal values, including numbers or strings. The
expression will be evaluated once, and the case that matches its value will be executed. If no case matches, and an optional else clause is provided, it
will execute.

Each case statement must be unique, and having duplicate or overlapping statement ranges will cause a compiler error. Each case can either specify a
single value, or a range of values that the expression must fall within, for the case to match.

begin/end blocks can be used in order to provide more than one statement for an individual case, or for theelse clause.

Unlike other languages, execution will not "fall though" from the first matching case to others, but only a single case will ever be executed.

Case type of

A variation is the case type/of statement, which allows you to execute different cases depending on thetype of the expression at runtime:
case myControl type of

Button: writeln("Looks like a button!");

CheckBox: writeln("This one's a checkbox");

else writeLn("No idea what this is!?");
end;

Essentially, a is cast is performed on each case, and the first matching case will be executed. Note that unlike for regulatase/of, this construct allows
for potential overlap (e.g. for descendent types), so attention must be paid that the case for a base type does not prevent a later case for a more
concrete subtype to ever be hit.

See Also

e case Expressions Statements
e if/then Statements
e begin/end Block Statements

Locking Statements

A locking statement protects a block of code to be only run from a single thread at a time.
Example:

var mylock := new Object;

it.chking mylock do begin

// thread sensitive operations.
end;

Limitation on Island

locking statements and locking Expressions are limited to work onMonitor classes, on thelsland-based platforms. On the other platforms, any type can
be locked on.

See Also

e locking Expressions
e locked Method Modifier
e Locked Aspect

Using Statements

The using statement executes code that works on a resource that needs to be manually disposed of afterwards. You can thing of it as a convenient
combination of a local variabele declaration alongside a try/finally block that makes sure the contents of the variable is disposed proeprly at the end,
even if an exception happens:

using fs := new FileStream("textfile.txt", FileMode.Open) do begin
var b := new byte[123];
fs.Read(b, 0, b.Length);

end; // the filestream is closed here.

The statement begins with the keyword using, followed by the name of a new variable and an initializer; typically the initializer will create a new object,
or call a method that returns a new object, but in theory, any expression is permitted. The do keyword can be followed by a single statement or a
begin/end block grouping multiple statements.

At the end of theusing statement, the Dispose method wil be called on the object (if it supports disposing). This call is ensured even when an exception
occurs, as if it were encapsulated in a try/finally.

Essentially, the above code is equivalent to:

with fs := new FileStream("textfile.txt", FileMode.Open) do try
var b := new byte[123];
fs.Read(b, 0, b.Length);

finally
IDisposable(fs):Dispose();

end;

The Disposable Pattern

You can read more about the Disposable Patternhere. Essetially, it centers around an interface (calledDisposable on .NET and the Island-based native
platforms, and AutoCloseable in Java, which provides a single method Dispose or close), which the compiler will automatically call, if the interface is
implemented.

Using using on an object that does implement the interface is permitted, but has no effect at runtime. However, this allows you to apply proper
precautions when using vlasses that might later change to become disposable.

Auto-Release Pools (Cocoa)

When targetting the Cocoa platform, the using statement has been extended with a special syntax using theautoreleasepool keyword, in order to create
new Auto-Release Pool for this thread, and clean it up at the end of theusing statement.

Please refer to the Auto-Release Pool topic for more details.

using autoreleasepool do begin
NSApplicationMain(argc, argv);

end;
Cocoa Only
The using autoreleasepool syntax is relevant and available on theCocoa platform only.
See Also
e Disposable Pattern
o Auto-Release Pool
o Automatic Reference Counting (ARC)
e using (__autoreleasepool) statement in C#
e try (_ autoreleasepool) in Java
e __using keyword in Swift
e using keyword in C#
e autoreleasepool keyword in Silver

With Statements

The with can be used to temporarily introduce new members in the scope. It supports multiple with items seperated by a comma. The main benefit of
with over using a regular local var declaration is that with more explicitly limits the scope of the new variables to the statement or block of statements it
applies to. The do keyword can be followed by a single statement or abegin/end block grouping multiple statements.

with fb := CalculateFooBar do begin
writeLn(fb);

end;

// fb is not available here anymore.

Optionally, the matching keyword can be applied to ensure that the object matches a certain type or subtype - symmetrical to hownatching works in for
loops. The with statement will only be executed if the type matches, otherwise it will be silently skipped. For obvious reasons, an explicit type needs to
be specified when using matching.

with matching b: Butotn := GetNextControl do begin

writeLn($"Ayup, {b} is a button!");
end;

With Statements and Records

When the expression for the with statement is a Record or other value type, the new variable acts as an alias to the original record, and any changes
done on the identifier will directly affect the original record.

By contrast, assigning the record to a new localvar declaration would create a copy of the record on the stack:

var x: Person;
x.Name := "Peter";

with y := x do
y.Name := "Paul";

// x.Name is now Paul
Compared to:

vary = Xx;
y.Name := "Paul";

// x.Name is unchanged, as y is a separate copy

See Also

var Statements
begin/end Block Statements

Value Types vs. Reference Types
Record Types

Yield Statements

The yield statement is used when generating asequence to add a new value into the generated sequence. It can be used in two places: interator
methods and for loop expressions.

e o o o

Please refer to these two topics for more details:

o lterators
e for loop expressions

Examples:

Using yield in an iterator, the following method will return a sequence with 12 items:start, Value 0, Value 1, Value 2, Value 3, Value 4, Value 5, Value 6, Value 7,
Value 8, Value 9, end:

type
MyClass = public class
public
method Test: sequence of String; iterator;
end;

Implementation:

method MyClass.Test: sequence of String;
begin
yield 'start’;
fori: Integer := 0 to 9 do
yield 'Value: '+i;
yield 'end';
end;

for each val in myClassinstance.Test do begin
Console.WriteLine(val);
end;
Using yield in a for loop expression, this creates a new sequence inx containing 10 strings with Value 0 through Value 9:

var x: sequence of string := for i := 0 to 0 yield 'Value: '+i;

Local Constants

Similar to Variables, the const statement is used to declare and optionally initialize a new constant in the current scope. The constant will be available
for all code below its declaration, up until the end of the current scope - that is either to the end of the current method, if the variable is declared on
that level, or to the end of the block Statement that includes the declaration.

Constant values need to be initialized with a value that can be determined at compile time, and - as the name implies - their value cannot change.

The initializer can be a simple literal, or simple expression combining one or more constant values (for example, the concatenation of two strings, or
the product of two integer constants.

const Pl = 3.14;

const NAME = FIRST + '' + LAST;
const AREA = 5.3 * 8.9;

Type Inference

The type of a constant is usually inferred from the (required) initializer, but an explicit type can be provided in order to make it explicit, or to overide
the default inference:

const | = 5; // Int32
const U: UInt64 = 5;
const D: Double = 5;

Modifiers

No modifiers are allowed on const declarations.

See Also

e Constants as Type Members
e Local var Declarations

Local Methods

The method statement can be used to declare and implement a new local method in the current scope. The method will be available for all code below
its declaration, up until the end of the current scope - that is either to the end of the current method, if the variable is declared on that level, or to the
end of the block Statement that includes the declaration.

The method's code has access to everything that is in scope at the point of its declaration, including type members, as well as any locaVariables
Properties, Contants or other local methods declared before it.

The method declaration follows the same structure as regularMethods declared as Type Members, with a method header that can include optional
parameters and result type, and a begin/end section encompassing the method body with optionalrequire and/or ensure sections to evaluate pre- post-
conditions.

method MyClass.XMarksTheSpot; // regular type member method
begin

var x := 5;

DoSomething(x);

method UpdateX: Boolean; // nested Local Method
begin

inc(x, 5);

result := x < 30;
end;

fori:=0to 10 do
if not UpdateX then
break;

DoSomethingElse(x);
end;

Please refer to the Methods topic in the Type Members section for a complete overview of method syntax.

Modifiers

No modifiers are allowed on local method declarations.

See Also

Methods as Type Members
Anonymous Method expressions
Lambda expressions

Local property Declarations

o o o o

Local Properties

The property statement can be used to declare a property in the current scope. The property will be available for all code below its declaration, up until
the end of the current scope - that is either to the end of the current method, if the variable is declared on that level, or to the end of the block
Statement that includes the declaration.

Local properties are similar to local variables, but - just likeProperties in a Type - can have getter and setter code associated with them that gets run
when the value is read or written.

In its simplest form, a property declaration starts with the keywordproperty, followed by a new unique name for the property, a colon ¢), and the type.
Declared as such, the property will behave the same as a Variable:

property i: Integer;
Distinct from variables, a property declaration can also provide aread and/or write expression that will be executed when the property is accessed:
property i: Integer read SomeExpression write SomeOtherExpression;

Properties with just a read expression are read-only, while properties with just a write statement are write-only. A property that provides both can be
read and written.

The property's getter and setter code has access to everything that is in scope at the point of its declaration, including type members, as well as any
local Variables, Contants, Methods or other local properties declared before it.

Please refer to the Properties topic in the Type Members section for a full discussion of properties and their capabilities.

Features of Local Properties

Local Property declarations can use all the features ofProperty type members in Classes and Records, including:

o Initializers

o read and write expressions

e Indexer Properties

e Stored Properties (behave just like a Variable)
e Type Inference

Modifiers

Similar to type members, the following modifiers are allowed on local variables:

¢ readonly — indicates that the property may not be altered after its declaration. For obvious reasons, this only makes sense for properties that
have an initializer.

property i := 5; readonly;

See Also

e Properties
e Local var Declarations
e Local method Declarations

Local Variables

The var statement is used to declare and optionally initialize a new local variable in the current scope. The variable will be available for all code below
its declaration, up until the end of the current scope - that is either to the end of the current method, if the variable is declared on that level, or to the
end of the block Statement that includes the declaration.

In its simplest form, a variable declaration starts with the keywordvar, followed by a new unique name for the variable, a colon (), and the type.
var i: Integer;

Optionally, the declaration can be followed by an initial value for the variable, assigned via the= operator. Variable declarations without initializer will
be initialized to the default value of their type.

var i: Integer := 5;

Type Inference

When an initializer is provided and a concrete type can be inferred from it, the type name can optionally be omitted. This is referred to at/pe
inference.

vari:=5;

It is important to note that - unlike in scripting languages such as JavaScript - the variable will still be strongly typed, in the above case to be an
Integer. Omitting the type name is merely a convenience (and sometimes a necessity, when using Anonymous Types which have no name), but that
does not mean that the variable is untyped.

Oxygene will use the type of the expression to the right of the:= operator to infer the type, if possible. For numeric literals, the inferred type will be the
smallest integer that can fit the literal, but no smaller than a 32-bit signed integer.

Declaring Multiple Variables in one Statement

Multiple variables of the same type can be declared in one statement by separating them with a comma. When using this optionno initializer may be
provided, as it would be ambiguous whether the initialization would apply to all variables or only to the last one.

var a, b: Integer;

Storage Modifiers (Cocoa)

On Cocoa only, the type name of a field declaration can be amended with theweak, unretained or strong Storage Modifier keywords, with strong being the
default.

var IValue: weak String;

To specify a Storage Modifier, the type cannot be inferred, but must be explicitly specified. Inferred types will always be consideredtrong.

Modifiers

Similar to type members, the following modifiers are allowed on local variables:

« pinned — can be applied topointer and class reference variables on the.NET platform to indicate that the target object will be pinned to a fixed
location and may not be moved by the Garbage Collector while the variable is alive (applicable on platforms that use GC, namely .NET and Java).

* readonly — indicates that the variable may not be altered after its declaration. For obvious reasons, this only makes sense for variables that
have an initializer.

var i := 5; readonly;
var a := new Customer; pinned;

See Also

e Fields
e Local property Declarations

Labeled Statements

Statements can be prefixed with a named label, so that they can be referenced and jumped to from other parts of the samenethod body. This is
particular helpful for terminating nested loops via the break or continue statements.

The label can be any unique identifier, and must be separated from the statement with a colon:

method LoopTheSquare;
begin
XLoop: for x := 0 to Width-1 do begin
YLoop: for x := 0 to Width-1 do begin
if value[x,y] > 200 then break XLoop; // breaks out of the outer loop
if value[x,y] > 100 then break; // breaks the inner YLoop
end;
end;
end;

While not officially supported or encouraged, labeled statements can also be jumped to via theyoto keyword.

Due to possible ambiguity with thecolon operator, labels cannot prefix a statement that starts with an identifier (such as for example a method call).
They can be followed by any keyword-based statement, including a begin/end, or by a semicolon.

See Also

Flow Control Statements
break Statement

continue Statement

goto Statement

e o o o

Expressions

Expressions are a constructs of code that represent a value. They are similar toStatements, but with a crucial difference: while regular statements
must always stand on their own, expressions represent a value that can (sometimes must) be used in the larger context of a surrounding expression
or statement.

For example "5 + 3" is an expression, with a resulting value ofg. It makes little sense to write '5 + 3" as a statement on it's own, but the expression can
be embedded in a more complex formula such as "(5 + 3) * 2", or in a statement such as 'var x:=5 + 3;".

Some expressions can be usedas statements, having their final value ignored. For example, aMethod Call Expression might produce a result that can
be part of a larger expression, but the same method can also be called as a statement.

Examples of Expressions

Expressions can be as simple as aliteral value, such as the number5 or the string 'Hello', they can be simple identifiers, referring to aVariable or
calling a Method that returns a value, or they can be complex - well - expressions combining several expressions together to represent a new
expression.

For example, the condition within anif/then is an expression (of Boolean type). If you declare a variable with thevar Statement and assign it an initial
value, that value is an expression.

var five := 5; // a simple literal expression, '5', is used to initialize a variable

var ten := 2 *five; // a literal “2" and a variable reference expression (*five") are used as
// operands to a larger expression that multiplies them

if ten > 5 then DoThis(); // a variable reference expression is compared to a literal
// expression and the resulting boolean expression is used to
// conditionally execute the “DoThis()" method call expression

In the above examples, you have seen three kinds of expressions:

e Literals - an actual hard-coded value.

e Binary Expressions - combining two operands with an operator such as* or <.

o Identifier References - referring to a variable or method that's in scope, simply by its name. (Technically speaking, the call t@oThis() is both an
Identifier References and a Method Call).

These are certainly the most common types of expressions, but Oxygene provides a range of additional expression types that allow you to express
more complex values and calculations.

For example:

o Member Access expressions allow you to directly access members of a class, record or enum using the .or : operator.

The self keyword lets you refer to the current class or record to use it in a nested expression, whilenherited expressions allow you to explicitly call
into the ancestor type.

The result keyword lets you work with and set the return value of amethod.

e new expressions are used to construct new instances of a type by executing itsconstructor.

Please refer to the nested topics listed in the sidebar on the left for a complete reference of available expression types.

Sophisticated and Advanced Expression Types

Unique to the Oxygene language, the traditionalif, case and for statement types can be used as expressions. When used as such,if and case
Expressions conditionally return different values, while for Loop Expressions return a whole Sequence of values.

async expressions can take any given Statement (not just expressions), and turn it into aFuture that will be executed asynchronously in the
background.

from expressions allow you to useLINQ to write strongly typed code that can query, filter and otherwise work with collections andsequences of
objects.

Parenthesis

Parenthesis allow you to visually enclose sub-expressions in order to indicate the order of precedence in which they will be executed within a larger
expression. This is especially helpful when using Binary Operators, but can also help clarify other more complex expressions.

var x := 3 + 2 *5// evaluates to 3 + 10 = 13, as * has precedence over + by default.
var x := (3 + 2) *5 // evaluates to 5 * 5 = 25, as the parenthesis cause the addition to be performed first.

All Expressions

Address-Of (@)
Anonymous Methods
Arithmetic and Logical Expressions
Arrayliterals

async Expressions
await Expressions
case Expressions
constructor Calls
Discardables (nil)

for Loop Expressions
from LINQ Expressions
Identifier

Global Access (:)
if/then/else Expressions

®© o6 o o 0o 06 0 0 0 0 0 0 0 o

implies Operator

in Operatoer

Indexers

inherited Operator
Lambda Expressions (->)
Literals

locking Expressions
mapped

Member Access

Method Calls
new Expressions
Operators
Parenthesis (())
Pointer Dereference (©)
raise Expressions
result

selector()

self

Tuple Literals
Type Casts (as)
Type Checks (is)

®© © o6 © 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0o

Expressions that can be Used as Statements

async Expressions
await Expressions
constructor Calls
Method Calls

new Expressions

e o o o o

Expressions that can be Assigned to

Discardables (nil)

Field Access

Identifier

Indexers

Pointer Dereference (*)
Property Access

result

Tuple Literals

e o o o 0o o o o

Literals

Literal Expressions, or simply Literals, are constant values expressed directly in code by providing a concrete, hardcoded number or string value.

Integer Literals

The default type of anlnteger Literal is determined by the first type from the following list that can hold the number: Int32, UInt32, Int64, UInt64 and
Biglnteger (the latter currently limited to the.NET platform).

Integer Literals are supported as decimal (default) or as hexadecimal and binary (withs and % prefixes, respectively). Spaces are allowed within the
number to logically group digits, commonly in blocks of 3 for decimal, 4 for hexadecimal and 8 for binary.

var Mylinteger := 153; // Decimal (Base 10) integer literal

var MyHexInteger := $100; // Hexadecimal (Base 16) integer literal with a value 256

var MyBinarylnteger := %101; // Binary (Base 2) integer literal with a value of 5

var MyBiglinteger := 698574357436578436543275894375984326598342759435634977653476574392865784356;
var MySpacedInteger := 500 000;

var MySpacedHexInteger := $c000 0000;

Floating Point Literals

Floating Point Literals can be defined by including a decimal point in the literal, or by using exponential notation with the letteg (upper or lower case).
Note that floating point literals only accept decimal numbers, not hexadecimal or binary.

var MyFloat := 153.0;
var MySecondInteger := 123E3; // 123000.0

String and Character Literals

String Literals start with a single quote () or double quote (') and end with the same type of quote that started it. Within the string, occurrences of the
quote character can be escaped by duplicating it.

Literals enclosed with single quotes () and consisting only of asingle character are considered to beCharacter Literals by default, but the compiler will
smartly 'upgrade' them to string literals, if it detects that a string is expected in the current context. Literals enclosed with double quotes (") will
always be strings.

Literals enclosed with a double quote (') may contains line breaks, in order to to define multi-line strings.

Character Literals can also be expressed asCharacter Code Literals - which are made up by a hash symbol #) followed by a 16-bit value indicating the
characters' unicode, without quotation marks. A hexadecimal code can be used if prefixed with $.

var linefeed = #10;
var carriageReturn = #$0d;

String literals can be concatenated with +, or linked/interspersed by Character Code Literals without the need for an explicit+.

var MyString := 'Hey there!";

var MyString2 := "Don't Stop Believing" // The apostrophe is fine because the string is surrounded by double quotes
var MyString3 Don't Stop Believing' // The apostrophe escaped

var MyString3 := 'Don'#0039't Stop Believing' // The apostrophe as character code literals

var MySingleChar := 'x'; // A Char, because length is 1
var MySingleCharString: String := 'x'; // Treated as string based on context

Interpolated Strings

String Literals can be interpolated with values at runtime, if they are prefixed by a dollar ¢) character. Inside an interpolated string literal, any range
of code surrounded by curly braces ({...}) will be interpreted as a code expression, which will be compiled, evaluated at runtime and inserted in the
string at this position.

var TimeString := $'lt is {DateTime.UtcNow} o" clock!";
To use a literal curly brace inside an interpolated string, the brace can be duplicated from escape interpolating:
var IValue := 5;

var MyString := $'The {{curly} gets replaced by a {IValue}'; // "The {curly} gets replaced by 5"

For obvious reasons interpolated string literals cannot be used forConstants (and are not technically literals).

Boolean Literals

The true and false keywords can be used to express Boolean literal values.

var oxygeneRocks = true;
var oxygenelsCaseSensitive = false;

Nil Pointer Literals

The nil keyword can be used to express a nil pointer, reference type or anullable type without value.

var b := nullable Boolean := nil;

Array and Set Literals

Array and Set literals are surrounded by square brackets []) and contain zero or more expressions, separated by comma () that provide the individual
elements of an Array or Set.

The type of all expressions must match, and the type of the underlying array or set will be inferred, if necessary to the closest common base type.
Whether the literal becomes an array or a set will also be inferred based on context, where an Array is inferred by default, if there is ambiguity.

method TakeArray(x: array of Integer);

TakeArray([1, 2, 3, 4, 5]);
vary := [0, 1, 2, 3, 4.5]; // array of double
var z: set of Integer :=[1, 2, 3];

See Also

e Literals
e Arra
e Set

Tuple Literals

A tuple literal is an expression that defines aTuple by providing a list of expressions, seperated by a comma () and surrounded by parenthesis ()). If
assigned to a pre-defined tuple, the expressions need to match in type; when used in combination with type inference in a var Statement, the individual
types will be inferred.

var x := (15, 15, 12); // tuple of (Integer, Integer, Integer)
var y: tuple of (Double, Double, Double) := (1, 1, 5); // tuple of 3 double types.

See Also

o Literals
e Tuple

Selector Literals (Cocoa)

The selector keyword can be used to get a selector reference on theCocoa platform. Selectors are feature unique to the Cocoa platform andObject
Model, and they represent the name of an Objective-C runtime method.

Selectors are held in a type called SEL, and can be used to dynamically invoke methods, for KVO, Notification center, or to pass them to other Cocoa
APIs that expect a aSEL type.

A selector is declared with the selector keyword, followed by parenthesis enclosing the Objective-C name of the method, which is made up of the name,
plus a colon if the method takes parameters, plus additional name and colon pairs for all parts of a multi-part method:

method compare(aOther: id)_ options(aOptions: NSCompareOptions);
var s := selector(compare:options:);

Using the selector literal syntax will cause the compiler to perform checks if the specified selector is valid and known, and a warning will be emitted if
a selector name is provided that does not match any method known to the compiler. This provides extra safety over using the NSSelectorFromString
function.

Note that by default, the Elements compiler might mangle type namesand method names, for example to ensure uniqueness of overloaded methods.
You can specify the [objc] Aspect on a method to prevent mangling and make its internal name on the Objective-C runtime match the selector name.

Cocoa Only

The selector keyword is relevant and available on theCocoa platform only, and selectors can be used only to refer to methods on classes that use the
Cocoa Object Model.

See Also

e Selectors on Cocoa

e _ selector() in C#
e #selector() in Swift

Arithmetic & Logical Expressions

Oxygene allows the use of operators to create comparisons, arithmetic expressions and logic expressions. The language has well-defined set of
operators for these scenarios, but Types can provide custom implementations for operators, using a technique called Custom Operators, a.k.a.
Operator Overloading.

Comparisons

Supported Operators: =, =, <, =, >, = (and <=, >=, <>)
The above operators can be used to compare two operands for equality, non-equality and sort order.

For types that to not provide a custom equality and/or non-equality operator implementation= and = will compare the object reference (i.e. identity)
of heap based types (such as Classes), and do a memory/value compare for stack-based types (such asIntegers, Booleans, Floats, and Records).

If a matching custom = or = operator is defined on the type of either the left or the right-hand expression, it will be called instead.

The <, =, >, = operators are only supported if the appropriate custom operator is implemented on one of the types.

var x :=5;
vary := 10;
if x < 5then ...

Note : Oxygene supports rich unicode =, = and = operators, but also, for backwards compatibility, the double-character<=, >= and <> spelling. Fire
and Water will auto-correct <=, >= and != to =, = and =, respectively, and on macOS you can use~c<, \o> and o= to type these operators directly, as
well.

Double Boolean Comparisons

Oxygene provides a convenient short-hand for comparing a value against two boundaries at once, via Double Boolean Comparisons. a double boolean
comparisons is true only of both the first and the second hald of the expression is true. It is convenient for testing if a value falls within a range
between two values:

vary := 10;
if 10 = x < 15 then
writeLn("x is between 10 and 15").
The above check essentially expands to

if (10 = x) and (x = 15) then.

Arithmetic Operators

Supported Operators: +, -, *, /, **, div, mod
The above operators are used to carry out mathematical operations on two operands

e + evaluates to the sum of two values byadding them.

« - evaluates to the difference of two values bysubtracting them.
e * evaluates to the product of two values bymultiplying them.

« /evaluates to the fraction of two values bydividing them.

o ** evaluates to the power of two values.
e div also evaluates to thefraction of two values bydividing them. It is provided for Compatibility with Delphi (see below).
e mod evaluates to the remainder of two values left over when performing an integer division.

vara:=2+2;//4
varb :=12+3;//9
var ¢ := 3%9; // 27
vard:=8/2;// 4

var d := 2*¥10; // 1024

var d :=10.0/4.0; // 2.5
vard :=10.0div 4.0; // 2.5
vard :=10.0 mod 4.0; // 2

Note that all operators use the type of the input values as result type. For example Dividing two integers will always perform an integer division,
producing an integer, potentially losing the remainder. If one of the two operands is a floating point type, the result will be a float, as well.

Also note that Oxygene will apply operator precedence (more on thatbelow for combined expressions, according to mathematical rules ¢ an/ tage
precedence before + and -, etc).

vara:= 5+ 10 *2; // 25
varb:= 5+ (10 *2);// 25
varb:=(5+ 10)*2);// 30

Note on Delphi Compatibility Mode: The / and div operators will behave differently inDelphi Compatibility Mode. As in Delphi, the operators will not
infer the result from the operands. Instead , / will always result in a floating point, whilediv will always perform an rounded integer division.

Logical Operators

Supported Operators: and, or, xor, not and implies

The above operators can be used to combine boolean expressions.and, or and xor are binary operators, which means the take two parameters;not is a
unary prefix operator and takes one parameter to it's right.

and returns true, if both the expression on the leftand the one on the right are true.

or returns true, if either one of the expression on the leftor the right is true.

xor returns true, if only one of the expression on the leftor the right is true, but not both.

not returns true, if the value it precedes isfalse, otherwise it returnstrue. In other words, itreverses or negates the boolean value.
implies returns false, only if the expression on the left istrue, but the the expression on the right is not.

e o o o o

vara:=xandy;
varb:=xory;

var c := X Xory;
var d := not x;

var e := x implies y;

By default, Oxygene will apply Boolean Short-Circuit, where starting from the left, the compiler will stop evaluating expressions once the outcome of
the expression is determined.

For example, if the left-hand side of anand operation is false, the result will always befalse. Likewise, if the left-hand side of anor operation is true, the
result will always be true. In both cases, evaluation of the right will not be evaluated at all.

Note that different than in many other, especially C-based languages, the logicaland, or and xor operators take precedence over comparisons. For this
reason, combining multiple comparisons with logical operators will often require parenthesis:

if x> 5andy < 10 then ... // [] compiler error, because "(5 and y)" would be evaluated first
if (x > 5) and (y < 10) then ... // [] works!

Bitwise Operators

Supported Operators: and, or, xor and not

The save four operators can also be used for bitwise operations on numeric (integer) values. When doing so, they apply above boolean logic on each
bit of the numeric value's in-memory representation, with 0 and 1 represening false or true, respectively.

and returns 1 for very bit that is1 in both the expression on the leftand the one on the right.

or returns 1, for every bit that is1 either one of the expression on the leftor the right.

xor returns 1 for every bit that is1 in only one of the expression on the leftor the right, but not both.

not returns 1, for every bit that iso, and 0 for every bit that is one. In other words, itinverts the bit mask of the value.

e o o o

var a := %0000 1100 and $0000 1010; // %0000 1000
var b := %0000 1100 or $0000 1010; // %0000 1110

var ¢ := %0000 1100 and $0000 1010; // %1111 0110
var d := not %0000 1100 /] %1111 0011

Operator Precendence

Nesting Expressions with Parenthesis

Parenthesis allow you to visually enclose sub-expressions in order to indicate the order of precedence in which they will be executed within a larger
expression. This is especially helpful when using the arithmetic and logical expressions discussed in this topic, but can also help clarify other more
complex expressions.

var x := 3 + 2 *5// evaluates to 3 + 10 = 13, as * has precedence over + by default.
var x := (3 + 2) *5 // evaluates to 5 * 5 = 25, as the parenthesis cause the addition to be performed first.

Nullable Types in Expressions

Please refer to the Nullable Types In Expressions topic for some caveats when using expressions that contain potential nilvalues. In particular, a nil
value anywhere in an operator expression propagates outwards, potentially turning the entire expression nil. This can have some unintuitive results
when working wit booleans, in particular in combination with the not operator, where not nil remains nil. Also consider Boolean Short-Circuit.

Implies

The implies boolean operator can feel a bit awkward to start with, as it is crafted for a very specific scenario: to be used idnvariants to a condition that
is only relevant if another condition matched.

implies combines two boolean arguments. If the first argument isfalse, the result istrue, otherwise, the result is the second argument. The idea is that
the trueness of the second condition only matters if the first is true.

The following (contrived) example of a class representing a traffic light illustrates it:

type
PedestrianCrossing = class;
public
property CarLight: Color;
property PedLight: Color;
public invariants
CarLight = Color.Green implies = PedLight = Color.Red;
PedLight = Color.Green implies = CarLight = Color.Red;
end;

The invariant test here ensures that, if one direction's traffic light is green, then the other must be red, to avoid accidents. If it is not green, then the
other light does not matter (it could be green, red, yellow or even purple, for as far as the test is concerned).

Essentially, x implies y translates to (not x) or y, but expresses the intent of the check much clearer.

See Also

Class Contracts
Invariants

L]

L]

e Pre- and Post Conditiopns

o Arithmetic and Logical Expressions

The in operator check if the left-hand value side is in theArray and Collections, Set or Flags Enum on the right, and returnstrue or false
var x: set of Color;

if Color.Red in x then

For Set and Flags Enum types, the operartor directly checks whether the value is included. For Flags, that is the equivalent of applying thend bitwise
operator and checking for equality.

For Arrays, Collections and Sequences, the in operator invokes the LINQ Contains method, if available.

Not In
For ease of readability, thein operatore can be combined withnot, to negate the result.

if Color.Red not in x then

Which is more naturally readable than the equivalent:

if not (Color.Red in x) then

See Also

e and Bitwise Operator
e LINQ

Identifier Expressions

An identifier is the simplest form of expression, and simply refers to a code element, typically a type reference, by name.

An identifier could refer to a local variable or parameter, a member of the current type, such as &Field, Property or the like, a named Type itself, or
anything that can be referenced by name.

See Also

¢ Member Access Expressions
e var Variable declarations

Self

The self keyword refers to the current instance of the class that a block of code belongs to. It providesccess to the members of the class (although by
default they are in scope without the need for a self, and also makes the current instance available, for exa ple to be passed or assigned to other
places.

type
Foo = public class
private

property Value: String;

public
method Test;
begin
var x := Value; // members can be access directly...

var u := self.Value; // ... but also via “self’;

var f: Foo := self; // “self’ represents the instance as a whole.
end;

end;

As discussed in Member Access Expressions, self can be helpful to avoid ambiguity, or access class members that are "hidden" from by another
identifier of the same name. It can also provide clarity and code improve readability, in places where it might not be obvious which identifiers refer to
type members, and which don't:
method UpdateValue(Value: String);
begin

self.Value := Value; // the paramer hides the property
end;

Self in Static Members
In static members (defined with the static modifier or the class method/class property, class var or class event prefix), self refers to the (platform-specific)

meta-class that describes the current type. This can be assumed to be unique for each type, and distinct for separate types, and allows for
polymorphism (i.e. in descendant class, self will refer to the descendant meta-class:

self inside a static member is identical totypeOf(self) in an instance method.

See Also

e Member Access Expressions

e Inherited Expressions
o typeOf System Function

Mapped

Only available in Mapped Types, the mapped keyword refers to the current instance of the type, but typed to be the original underlying type that is
being mapped to.

You can think of mapped as equivalent to self - both refer to the same physical instance of the type, but they differ in as what type the class or record is
seen.

type
MyString = public class mapped to String

var x := self; // x" is a "MyString"
vary := mapped; //y' is a String
if x =y then ... // but they are the same

'mapped' in Constructors

In mapped types, constructors can defer defer to constructors of the original type using themapped expression with the constructor Call Expression. This
works in symmetry with how the inherited constructor Syntax works in "real" classes:

constructor MyObject;
begin

mapped constructor("Hello");
end;

See Also

e Mapped Types
e mapped to Member Modifier
o self Expression
e constructor Call Expressions

Inherited

The inherited operator can be used for the following expressions to explicitly operate on the implementation provided by the base class of the current
Class, instead of a potential override in the current type.

When overriding a class Member, inherited is the only way to access the override functionality from the descendant type, as all direct calls to the
member will be directed to the override version, as part Polymorphism.

When used standalone, the keyword will call the inherited version of theMethod, Property or Constructor that exactly matches the current one in name
and signature.

type
Foo = class
public
constructor;
begin
end;
end;

Bar = class(Foo)
public
constructor;
begin
inherited; // calls the exact same (in this case name- and parameterless) constructor in the base
end;
end;

inherited can also be used with an explicit member name and (optional) parameters, to call the same omny member in the base class.

type
Foo = class
public
method Test1; virtual;
begin
end;

method Test2(aValue: String); virtual;
begin
end;

end;

Bar = class(Foo)
public
method Test1; virtual;
begin
inherited Test2('Hello, Unnamed'); // explictly calls Test2 of the base, not Bar.Test2
end;

method Test2(aValue: String); virtual;
begin
inherited Test2($'Hello, {aValue} [1'); // calls same method in base, but w/ different value;
end;
end;

Inherited in Constructors

While calling into the base is optional for regular methods or properties,Constructors must always call a a different constructor of the same class that
(eventually) calls into a constructor in the base class.

Constructors without an explicit Constructor Call will automatically either call a constructor matching the same parameters (if available) or the
parameterless constructor (again, if available) of the base class.

The Constructor Call and Constructors: Deferred Construction topics cover this in more detail.

See Also

constructor Call Expressions, Constructors, and Deferred Construction
mapped Expressions

old Expressions

self Expressions

e o o o

Result

Inside Methods with a return value, the result expression can be used to refer to the result that the method will return upon completion.

result acts like a variable of the same type as the method's return type, and will be initialized to that type's default valueni for reference types, ando
or the equivalent for value types) as the method starts. result can be both assigned toand read from.
method Test: Integer;
begin
result := 15;

if result > 30 then

end;
See Also

e Methods
e Value Types vs. Reference Types

Old

Inside an ensure Post-Condition block, the old operator can be used to refer to the original value a parameterField or Property had at the beginning of
the method. This can be useful for checking the validity of the result compared to the previous state. Note that for heap-based Reference Types
(except Strings such as Classes, which receive special handling), the old operator only captures the old reference, but not the old state of the object it
contains.

method MyClass.IncrementCount(aBy: Int32);
require
aBy > 0;
begin
fCount := fCount + aBy
ensure
fCount - aBy = old fCount;
end;

See Also

e ensure Post-Condition block
e Class Contracts

Value

Inside a Property's write block, the value expression can be used to refer to and access the unnamed parameter that contains the new value being
assigned to the property:
property Foo: String

read fFoo

write begin

if Foo = value then
fFoo := value;
end;

See Also

e Properties

Member Access

A dot (.) is used to access aMember of a Type, such as accessing the value of aField or Property, or call a Method:

var x := IMyObject.SomeProperty;

or

IMyObject.DoSomething(5);

Member access requires an Expression on the left side of the dot that is notnil. If the expression evaluates tonil, a NullReferenceException will occur.
The right side of the dot needs to have one of the following expressions:

Field Access

Property Access (optionally with Indexers)
Method Call

Event Access

e o o o

which is expressed by the name of aMember of that type that is visible from the current scope.

The resulting expression is of the same type as the member that is being accessed, and it can be used in a more complex expression, or - if the
member is a non-read-only Field, Propertiy or Event - be assigned to, to update their value.

var x := IMyList.Count + 5;
(T Using the result of a property access as part of a+ Binary Expression.)
IMyObject.FooBar := 'Baz';

(T Assigning a value to a property access expression.)

Nil-safe Member Access

By default, member access throws a NullReferenceException (NRE) if the left side is anil reference (e.g an uninitialized variable). Using the "colon" {)
operator, also called the "not-nil" operator, instead of the dot (.) can avoid that.

Nil-safe member access works like regular member access with., except that if the left hand side isnil, nothing on the right side is evaluated and
instead the entire expression resolves to nil. The : operator is right-associative, meaning that if the left side isnil, all of the right side of the expression
is skipped, and not evaluated at all.

var x := MyClass:SomeProperty;

This extends to any further member access chained to the expression. In the example below, the last two method calls do not need theoperator, to
protect against a nil value in SomeProperty. (However, if SomeProperty is assigned but CalculateSomething returns nil, the call to ToString would still NRE.)

var x := MyClass:SomeProperty.CalculateSomething.ToString;

Note that if the type of the right-hand expression is a value type (such as arinteger or a Boolean) that normally cannot be nil, the combined
expression will be treated as a nullable version of that value type, according toNullabilty rules.

var b := MyClass:SomeBooleanProperty; // b is a "nullable Boolean"

Note that this can have side effects depending on how the result is used, especially if a nullable Boolean result is used as part of a more complex
expression.

var IFile := "/Some/File.exe";
/...
if not IFile:Exists then // this might not do what you think it does, if IFile is nil.

The above code will not do what you might expect from it, ifiFile is nil, since according to nullable boolean logic, 'IFile.Exists' would benil, and since any
operation involving nil remains nil, not nil is still nil...

See Also

Type and their Members

Field Access Expressions

Property Access (optionally with Indexers) Expressions
Method Call Expressions

Event Access Expressions

The "Elvis" operator, 2. in C# and Swift.

e o o o o o

Field Access

Fields of a Class or Record can be accessed simply by specifying their name.

For fields of the current type (i.e. the class or record that the current code is also a part of), simply the name of the field on its own suffices to access
it. To access fields of a different type (or a different instance of the same type), a Member Access Expression is used, appending a. or: to the
expression that represents the instance, followed by the field name:

type
Foo = public class
private

var fValue: String;
public

method CopyFrom(aBar: Foo);
begin

fValue := aBar.fValue;
end;

end;

In the above example, fvalue can be accessed directly, to get its value in the current instance of the class. AMember Access Expression is used to
access the same field on aBar - a different object.

Note that non-private fields are discouraged, so accessing fields (opposed to, sayProperties) on other instances is a rare (but not entirely uncommon)
situation. In the example above, you notice that a class can access private fields of other instances of the same class

Using self to Avoid Ambiguity

The self expression can be used to explicitly access a field on the current instance, in cases where the name of the field is hidden by a different
identifier in scope:

var Value: String;
method UpdateValue(Value: String);
begin
self.Value := Value;
end;

Although in general it is advised to avoid such issues by having a consistent naming schema — such ag prefix for fields, anda prefix for parameter
names:

var fValue: String;

method UpdateValue(aValue: String);
begin

fValue := aValue;
end;

Writing to Fields

Unless a field is marked asreadonly, field access expressions areassignable, allowing code to to update the value of the field (as already seen in the
code snippet above).

fValue := 'Hello';

See Also

Fields

Assign Statements

Member Access Expressions
Properties

e o o o

Property Access

Properties of a Class, Record or Interface can be accessed simply by specifying their name.

For properties of the current type (i.e. the class or record that the current code is also a part of), simply the name of the property on its own suffices to
access it. To access properties of a different type (or a different instance of the same type), a Member Access Expression is used, appending a. or: to
the expression that represents the instance, followed by the property name:

type
Foo = public class
private

property Value: String;
public
method CopyFrom(aBar: Foo);
begin
Value := aBar.Value;
end;
end;
In the above example, Value can be accessed directly, to get its value in the current instance of the class. AMember Access Expression is used to
access the same property on aBar - a different object.

Using self to Avoid Ambiguity

The self expression can be used to explicitly access a property on the current instance, in cases where the name of the field is hidden by a different
identifier in scope:
method UpdateValue(Value: String);
begin
self.Value := Value;
end;
Although in general it is advised to avoid such issues by having a consistent naming schema, such as ara prefix for parameter names:
method UpdateValue(aValue: String);
begin

fValue := aValue;
end;

Writing to Properties

Unless a property is readonly (either by omitting a setter, or having the teadonly](../Members/Properties#other-modifiers modifier), property access
expressions can also be assigned to, to update the value of the property (as already seen in the code snippet above).

Value := 'Hello';

Accessing Indexer Properties

Indexer Properties are a special kind of property that do not represent a single value, but have a range of values controlled by one or more
parameters (or "indexes").

Indexer properties must be accessed by appending anlndexer Expression, consisting of square brackets and one or more parameters, to the name.
This applies both to reading and (where permitted) writing the property.

If an indexer property is marked asdefault, it can also be accessed by using the indexer expression directly on the type instance (or oelf).

var i := IList.Items[5];
IList.Items[5] := "New Value";

Note that a property access expression to an indexer property isnot valid without the appended indexer access expression. e.g.:

var items := IList.Items; //] compiler error!

See Also
e Properties

e Assign Statements
¢ Member Access Expressions

Method Access & Calls

Methods of a Class, Record or Interface can be accessed simply by specifying their name.

For methods of the current type (i.e. the class or record that the current code is also a part of), simply the name of the method on its own suffices to
access it. To access methods on a different type (or a different instance of the same type), a Member Access Expression is used, appending an. or: to
the expression that represents the instance, followed by the method name.

By default, accessing a method means to call it, unless the expression is preceeded by an@ Address-Of operator, or the surrounding context suggests
that the address of the method is expected. More on that below.

Parameter-less methods can be called with just their name, or an optional empty set of parenthesis(}). For methods that require parameters, these
must be provided in parenthesis after the method name:

type
Foo = public class
private

method Print;
method Update(aValue: String);

public
method Test(aBar: Bar);
begin
Print;
Update(aBar.Name);
aBar.NortifyOfUpdate(self);
end;
end;
In the above example, Print and Update can be called directly, as methods on the current instance of the class. AMember Access Expression is used to
call the NortifyOfUpdate method on aBar - a different object.

Using self to Avoid Ambiguity

The self expression can be used to explicitly access a method on the current instance, in cases where the name of the field is hidden by a different
identifier in scope:
method Test(aBar: Bar);
begin
var Print := new StarryNight(5, 10);

self.Print;
end;

In the above example, the local Print variable (which really should have been namediprint) hides the Print method. Via theself keyword it can still be
called. In this case simply adding parenthesis, Print(), would also have resolved the ambiguity.

Generic Parameters

Methods might be defines with generic parameters. In most cases, these can be inferred from parameters of the method call, but sometimes it might
be necessary to explicitly specify them, using angle brackets between the method name and the (optional) parameter list:

var x := IStringList.Select<Integer>(s -> length(s));

The above example would compile without the explicit <Integer> because the type can be inferred from the code in theLambda Expression, but it is
good to have the option to be explicit.

Multi-Part Method Names

Methods can have Multi-part Method Names that give a more expressive description for individual parameters. The individual parts of the method
name will be used for the call in the same way as they are in the declaration, with each part being followed by a set of parenthesis containing a subset
of parameters:

10bject.RunCommand('ebuild') Arguments('MyProject.sIn', '--configuration:Debug');

Trailing Closures

If the last parameter of aMethod (or Constructor) is a Block type used as a callback, rather than passing a method name orAnonymous Method, the
block can follow the method call as a "trailing closure". This allows for a more natural integration of the callback into the flow of code and essentially
makes the method call feel more like a native language construct being followed by an begin/end block:

The following snippet shows a call todispatch_async with a trailing closure:

dispatch_async(dispatch_get_main_queue) begin
// do work on the main thread
end;

If the closure receives any parameters, their names will be inferred from the declaration of the method or theBlock type used in the declaration, and
become available as if they were local identifiers:

remoteAdapter.beginGetDataTablewWithSQL('SELECT * FROM FOOQ') begin
writeLn(table)
end;

To avoid ambiguity, trailing closures are not supported insiderequire/ensure clauses of Class Contracts.

Getting the Address of a Method

Sometimes, instead of calling a method, one needs to obtain its address - typically to assign to arEvent or pass it as aBlock. There are two ways to
achieve this.

Preceding the method access expression with the @ Address-Of operator will always return its address:
var m := @IMyObject.Foo; // get the address

.n-ﬁ.(); // call it, later

Alternatively the compiler will also infer that the address of the method is requested, based on the context the method access expression is used in -
for example when assigning to a Block type variable/parameter or to an event via+=/-=:

Button.Click += OnClick;
var callback: block := OnSuccess;

Note that parenthesis after the method name arenot permitted when obtaining a method's address. In fact, specifying either@ or an empty set of()
can resolve (rare) ambiguities where both the methods address or its result would be valid (for example, if the method's return valueis a block of the
same type as the method itself).

See Also

e Properties
e Assign Statements
o Member Access Expressions

Event Access

Events of a Class, Record or Interface can be accessed simply by specifying their name.

For events of the current type (i.e. the class or record that the current code is also a part of), simply the name of the event on its own suffices to
access it. To access events of a different type (or a different instance of the same type), a Member Access Expression is used, appending an. or: to
the expression that represents the instance, followed by the event name:

IButton.Click += OnClick;

Using self to Avoid Ambiguity

The self expression can be used to explicitly access an event on the current instance, in cases where the name of the field is hidden by a different
identifier in scope:

Working with Events

Events are multi-cast and hold a chain list ofBlocks that is maintained internally. As such, Events are not "read" or "written" in the commom sense,
but rather new handlers can be added or removed to an event, using the spcialized += and -= operators:

IButton.Click += OnClick; // add a handler
iéutton.CIick -= OnClick; //remobve it agaun.
Additionally, events can beraised (or triggered, fired), which essentially will call all blocks subscribed to the event, in an undetermined order.

By default, only the class that declares an event can call it; external code can only add or remove handlers. An event is called using the regular
Method Call expression, but requires parenthesis to be provided, even if the event is parameterless.

if assigned(OnClick) then
OnClick(args); // foire the Events

See Also

e Events
e Member Access Expressions

Indexers

An indexer expression is used to access sub-items of an expression at a specific index. Expressions that can be index includérrays, Indexed
Properties or objects with a Default Indexers and Tuples.

An indexer expression consists of a pair of square brackets []) containing one or more expressions, separated by comma. The number and type of the
expressions depends on the definition of the indexed expression.

var x := IMyArray[5, 8];
var y := IDictionary['Foo'];
var z := IMyTuple[1];
Arrays

Arrays can have one or more dimension, and when indexing the array as many indexer expressions can be provided as there are dimensions. If the
number of indexes matches the number of dimension, an array element is the result; if fewer expressions are provided, the result is a sub-array with
the remaining dimension(s).

Imagine an var a := array [0..9, 0..9] of String. This can be thought of as a square of 100 string values, or ten rows with ten columns each.

Indexing the array with two indexer expressions accesses one specific string.a[0,0] is the very first string, anda[9,9] the very last. a[0,9] is the last string
oin the first column, while a[9,0] is the first string of the last column.

(which index represents the "column" and which one the "row" is completely arbitrary, of course, and depends on the semantics behind the actual
data in the array).

Indexing the array with a single expression will return a subarray, one individual row of the arrayal0] ios the first row (anarray [0..9] of String, itself),
while a[9] is the last row.

Of course, sub-arrays can be indexed themsleves, soa[0][9] will index the first row, and then index the last element in it, essentially being equivalent
to a[0,9].

var a := array [0..9, 0..9] of String;

var first := a[0, 0];
var last := a[9, 9];
var x := a[0, 9];
vary := al[9, 0];

var sub := a[0]; // sub is an array[0..9] iof String
last z := sub[9]; // same as a[0,9]

Arrays are always indexed with anInteger, Enum or Boolean type, depending on how the array was defined. Each dimension of an array can start ab
(the default), or at an arbitrary start value specified when declaring the array, and must fit within the bounds of the array.

Indexer Properties

Indexed Properties are a special kind of properties, that look similar to an array, when being used, but under the hood provide their own code to
access and store individual items.

Like Arrays, indexer properties can define one or more parameter, or dimensions, but unlike arrays, these parameters can be of any type, including
non-numeric ones. Also unlike arrays, accessing an indexed property always requires all parameters, one cannot obtain a "slice" of a multi-dimensional
indexed property.

property Languages[aName: String]: String; ...

var x := Languages['Swift'];
Default Indexers

Default Indexers are essentially the same aslIndexed Properties, with the special provision that the name of the property can be omitted and thelype
containing the property itself can be indexed.

Essentially this is just a convenient shortcut to omit the name of the property but it allows for cleaner and richer APIs, especially for objects where the
indexed data is their main purpose (such as a List or a Dictionary class, for example:

var INames := new List<String>;

vary := INames.Count;
var x := INames[5];

var z := INames.ltems[5]; // more verbose and less intuitive

Tuples

Individual members of aTuple can also be accessed via an indexer expression. Tuples are always indexed with anconstant integer expression,
starting at zero and ending one value below the number of items in the tuple. The result is strognly typed to the particular member of the tuple.
var t := (1, 'Hello', true);

var a := t[0]; / a is an Integer

var b :=t[1]; // b is a String

var c := t[2]; // c is a Boolean

var d := t[al; // 0 Compiler error - tuple index must be constant

Writing to Indexer Expressions

Assuming the underlying expression is not read-only, indexers can beassigned to, to change an individual value of the expression.

a[5,5] := 'Center(ish)";

p['Oxygene'] := 'My favorite propgramming language';
t[1]:=5;
See Also
e Arrays
« Indexed Properties and Default Indexers
e Tuples.

Global Access

The global access expression, :, allows access to global Namespaces in cases where they would otherwise be hidden by a different identifier in the
current scope.

For example, a local variable named "System" might make it impossible to access the System.* namespaces on.NET by name. The: works around
that:

type

MyClass = public class
property System: String;
method LoadFromFile;
begin

:System.|O.File.ReadAllBytes(...);

end;

end;

The operator works similar to theglobal:: prefix in C#, and can only be prefix to a fully qualified name, i.e. a name that includes the namespace, or the
name of a Type or Global that has no namespace.

See Also

e Namesspaces

Lambda

A lambda expression is a short version of anAnonymous Method.

It is used to define an inline callbacks that is assignable to aBlocks, an interface reference with a single method that can act as a delegate, or an
Expression tree.

Lambdas start with an identifier or a comma seperated list of identifiers surrounded by parenthesis, followed by the lambda operator-. After the
operator, either a single expression or a begin/end block that includes one or moreStatements.

The identifiers before the -> operator define the parameter names of the lambda. These have to match the number of parameters expected by the
block or interface that the lambda is being assigned to, and their type will be inferred.

Lambdas, like Anonymous Method, have full access to everything available in the scope they are defined in, including type members, as well as any
local Variables, Properties, Contants or other local methods declared before it.

Any change done to variables or properties in the local scope will affect the lambda, and vice versa.

method Loop(aAction: block(aValue: Integer));
begin
for i: Integer := 0 to 10 do
aAction(i);
end;

method Test;
begin

Loop(a -> writeLn(a)); // This prints "0" thru "10"
end;

When there is no parameter for the lambda, an optional set of empty parenthesis or just a> operator is allowed to start the lambda. When there is
more than one parameter, parenthesis are required:

Test1(-> writeLn('test!")); // parenthesis are optional, without parameters
Test1(() -> writeLn('test!"));

Test2(a -> writeLn($'Got {a}')); // parenthesis are optional, for a single parameter
Test2((a) -> writeLn($'Got {a}'));

Test3((a,b) -> writeLn($'Got {a} and {b}'")); // parenthesis are required
See Also

e Anonymous Method expressions
e Methods as Type Members
o Local method Declarations

Anonymous Methods

An anonymous method is used to is used to define an inline callbacks that is assignable to alocks, an interface reference with a single method that
can act as a delegate, or an Expression tree.

Anonymous methods start with the block, delegate or method keyword, followed by a Method signature and a begin/end block that includes one or more
Statements.

Anonymous methods can use any member defined in the scope they are defined in. Any change done to variables in the local scope will affect the
lambda and vice versa.

method Loop(aAction: block(aValue: Integer));
begin
for i: Integer := 0 to 10 do
aAction(i);
end;

method Test;

begin
var b := 10;
Loop(method(a: Integer); begin
writeLn(a+)
end);
end;

An alternative syntax for defining anonymous methods is aLambda expression, which is shorter but cannot provide parameter types and relies on
type inference.

Static Anonymous Methods

Anonymous methods may optionally be declared as static, by prefixing them with theclass keyword. This is works analogous tostatic anonymous
methods in C# 9.0.

method Test;
begin
var b :=10;
const c := 20;
Loop(class method(a: Integer); begin
writeLn(a+c); // cannot access "b" here.
end);
end;

Making anonymous methods static can avoid unintentionally or unnecessarily capturing state from the enclosing context, which could result in extra
overhead.

See Also

Lambda expressions
Anonymous Interface Classes
Methods as Type Members
Local Method Declarations

e o o o

If/Then/Else Expressions

The if/then expression works similarly to the commonif/then Statement , except that is an expression that presents a value - namely that of either the
then sub-expression or the (optional) else sub-expression, depending on whether the condition is true or false.

var IDescriptiveText := if x < 10 then
'less than ten'
else
'ten or more'

In the above example, the variableIDescriptiveText is assigned one of two values, depending on whether the conditionx < 10 is true or false.

Optional else clause and Nullability

Like with the if/then Statement, the else clause is optional. If it is omitted, the value of theif/then expression for a false condition will benil. This implies
that if the type of the then expression is a non-nullable type, such as a value type, the type of the whole expression will be upgraded to baullable.

var ICount := if assigned(s) then s.Length; // ICount will be a nullable Integer

Nullable Conditions

The condition expression for theif/then expression must be ofBoolean or Nullable Boolean type.

If the condition is a simple boolean, theif/then statement will execute thethen clause if the condition is true, and the (optional)else clause if the
condition is false.

If the condition is a Nullable Boolean type, then the additional case of the condition evaluating tonil needs to be considered. While anil nullable
boolean strictly speaking is not equivalent to false, the if/then statement treats them the same, and will execute theelse clause, if provided, in this
case.

See Also

o if/then/else Statements
e Nullable Types

For Loop Expressions

For Loop Expressions are a way to use a regularfor Loop as part of an expression, symmetrical to the newCase Expressions and If Expressions. The
result of the for loop expression is a Sequence of values (implemented internally the same way as an lterator would be).

Just as the regular for Loop Statement, the for loop expression supports for/to loops that iterate over a range of numbers, andfor each loops that can
iterate over an existing sequence.

Because for loop expressions generate a sequence, rather than performing a repeated action, they use theyield keyword, instead of do, to provide the
expression for each iteration:

var ISquares := for i: Integer := 0 to 9 yield i**2;
The result of the above expression is a sequence that, when iterated, will contain the numbers 0, 1, 4, 9, 16, 25, 36, 49, 64, 81...

Note that, just like Iterators, the for expression does not actually run the full sequence and generate all values ahead of time. It merely defines how
each ite of the sequence will be generated. It is not until the sequence is iterated, for example with a for each loop statement, or a LINQ function sich as
.TolList().

Also just as the regular for Loop Statements, downto can be used to count downwards instead of up,step can be used to change the increment for each
loop iteration, index and provide a separate index counter and matching can filter a for each loop down to a specific set of subtypes.

breaking out of a for loop statement or continueing an iteration without value isnot supported, but it is allowed for an iteration to raise an Exception via
a raise Expression.

See Also

e Sequence Types
o lIterator

e for Loop Statement

Case Expressions

Like its counter-part the case Statement, the case expression can return one (or none, i.e.nil) of a set of possible expressions, depending on the
provided input:

Case expressions make it possible to use case in an expression instead of a standalone statement. Instead of statements, case requires a (single)
expression for each element and its else clause:

var i: Integer;
var s := case i of
0: 'none’;
1: 'one’;
2: 'two';
3..5:'afew’;
else 'many';
end;

The result type of acase expression is the closest common type that can be inferred from all individual statements. For numerical values, it will be the
closest type that can hold any of the returned (e.g. Double, if some cases return anlnteger and others a Double).

If the else clause is omitted and no other case matches, thecase expression returns the default value for its type 6il for a reference ornullable type, or
0-equivalent for a value type).

Sae Also

e case Statements
o default() System Function

Async Expression

async expressions are a special kind of expression that can take any expression or single statement and cause it to be evaluated or performed
asynchronously, without blocking the execution flow in the place the async statement is being called. Only when the value of anasync expression is
being explicitly accessed at a later time will the execution flow block and wait for the value to become available, if necessary.

To represent that their value will not be available immediately,async expressions will always be of aFuture type matching the type of the inner
expression.

For example, if the inner expression would be of typeinteger, the corresponding async expression will be of typefuture Integer, instead.

var lenl := async SlowlyCountCharactersinString("2nd String"); // len2 will be a future Integer
var len2 := SlowlyCountCharactersInString("Some String"); // len will be a regular Integer

var | := lenl+len2; // waits for the lenl Future to finish evaluating, if necessary

Plain Statements in async expressions

Despite being expressions themselves, async expressions can also work on a plainstatement, which has no resultingvalue of its own. In such a case,
the async expression will be a type-lessFuture, also sometimes referred to as a Void Future.

Unlike typed futures, a typeless future has no value that it represents, but it can be used to wait for the asynchronous task that it represents to be
finished.

var fut := async begin // goes off and does a couple of things in the background
DoSomething();
DoSomethingElse();
end;

DoSomeMore(); // meanwhile, do more work on the current thread

fut(); // wait for the type-less future to finish, if it hasn't already.
var x := fut(); // ERROR. fut has no value.

You can and should read more aboutFutures, both typed and type-less,here

See Also

e Future Types
e begin/end Block Statements
e async Method Modifier

Await Expressions

An await expression can be used to write asynchronous code in a linear fashion. It can be applied to methods that return &ask or Future, as well as to
methods that expect a callback closure as final parameter.

Code can be written as if the methods in question return a value right away, and the compiler will handle the task of unwrapping the provided code
and handle the callbacks properly. Under the hood, await will break the method into different parts, scheduling them to be executed asynchronously
once the awaited actions have been completed.

Await with Tasks

Await with Tasks works similar to the "async/await" pattern in other non-Elements languages, such as JavaScript or Visual C#. A method is declared as
returning a special Task type either explicitly, or using language sugar such as the C#async keyword. The returned Task instance can be used to keep
track of the status, and be notified when the result is available - which the await keyword abstracts:

method Test: Task<String>;
begin
var task := new Task<String>(-> begin
Thread.Sleep(10000);
exit 'Result!
end);
task.Start();
exit task;
end;

method OtherMethod();

begin
var IMessage := await Test();
writeLn(IMessage);

end;

At the point of the await in OtherMethod, the actual method containing the await call will finish. All subsequent code (such as the call towriteLn in the
example above) will be wrapped in a helper type, and execute once the task as completed.

Await with Closures

Await can also be used with methods that take a "callback" closure as last parameter. The parameters of the closure will turn into return values of the
call. For example consider the following call using Elements RTL's Http class:

method DownloadData;
begin
Http.ExecuteRequestAs)son(new HttpRequest(URL), (aResponse) -> begin
if assigned(aResponse.Content) then begin
dispatch_async(dispatch_get_main_queue(), () -> begimn
// show data
end);
end;
end);
end;

This code uses two nested closures, first to wait for the response of tne network request, and then to process its results on the main Ul thread. With
await this can be unwrapped nicely:

method DownloadData;

begin
var IResponse := await Http.ExecuteRequestAs)Json(new HttpRequest(URL));
if assigned(IResponse.Content) then begin
await dispatch_async(dispatch_get_main_queue());
// show data
end;
end;

Note how the parameter of the first closure,aResponse becomes a local variable, IResponse, and how await is used without return value on the
dispatch_async call.

For callbacks that return more than one parameter,await will return aTuple, e.g.:

var (aValue, aError) := await TryToGetValueOrReturnError();

Await with Asynchronous Sequences

On the .NET platform, await can also be used to loop anAsynchronous Sequence. Here the await keyword is followed by the for each keywords defining a
regular for Loop. Each individual entry in the sequence will be await'ed and the loop will be run for it. Execution after the loop will continue after all
items have been processed and the end of the asynchronous sequence has been reached.

var lltems: async sequence of String := ...;
await for each i in litems do

writeLn(el);
writeLn("Done");

See Also

e await keyword in C#

e __await keyword in Swift
L]

L]

Asynchronous Sequences
Iterators

Await for Closure Callbacks is unique to Elements, and is available inRemObjects C# and Swift, as well.

From Expressions (LINQ)

from expressions provide an elegant SQL-like way to perform query operations on &equence, Array or other collection.
This includes ways to filter, sort, group and join sets of data.

A from expression (also referred to as aLINQ expression, short for "Language INtegrated Query") always starts with the keyword from, and its result is a
new Sequence of the same or a derived (and possiblyanonymous) type.

var INames := from p in People
where p.Age = 18
select p.Name;

The beginning of the expression is formed by the two keywordsfrom and in. Much like aforiin, the in keyword is followed by the sequence to be
iterated, and preceded by a new variable that is introduced for the iteration. This variable is available throughout the rest of the expression to refer to
an individual item in the sequence.

Following the preamble can be one or more query sub-expressions, such as thewhere and select expressions in the example above. When the LINQ
expression is later executed, each sub expression is applies to the result of its predecessor.

In the above example from p in People is the origfinal sequence of all items in thePeople collection. where p.Age > 18 executes over each of these items,
returning a new sequence that contains only those matching the condition (p.Age = 18). select p.Name then runs over that sequence, i.e. only the persons
age 18 or above, and it will return a new sequence that has each adult's name, instead of the full data.

As a result, INames will be a sequence of String, containing the name value from all people whose age value was 18 or above.

LINQ Query Operators

The following query operators, or sub-expressions, are supported:

where

where can be used to filter a sequence. The expression should return a boolean wheretrue indicates this value will be included in the result.

var ITallPeople := from p in People where p.Height > 200;

from

from can also be used as a sub-expression, to introduce a sub-sequence into scope. Both the original identifier and the new variable are available in
scope, afterwards:

var IChapters :=
from book in Books
from chapter in book.Chapters
where book.Author = "Stephen King" and chapter.length > 50
select Book.Title+", Chapter "+Chapter.Title;
// all chapters by Stephe King that are longer than 50 pages

with

with can be used to evaluate a sub-expression, store it, and give it a name, so it can be reused in additional queries.
var s := "A sentence";

var vowels := from letter in s

with lower := Char.ToLower(letter)
where lower in ['e', 'u', ', '0', 'a']

join
join expressions can join two seperate collections together. An optionalinto clause can change the name of the resulting identifier.
var IBooksWithAuthor := from b in Books

join a in Authors on b.Author equals author.ID
select new class (Book := b, Author = a);

order by (descending)

order by is used to sort a sequence in a specific order. It expects an expression that is comparable. To sort by multiple criteria, more than one
exprerssion can be provided, separated with a comma. An optional ascecnding (default) or descecnding modifier can be appended after each expression
to reverse the order.

var ISorted := from p in People

order by p.Name ascending, p.Age descending
select p.Name+", age "+p.Age;

select

select can be used to convert each item of the sequence to a derived value, which can be of the same or a different type. Wheegelect is not the final
query operator in the expression, the into keyword has to be used to provide a new identifier for the rest of the expression.
var IShortPasswords := from u in Users

where not u.Disabled

select u.Password into p
where p.Length < 8;

group by
group by is used to partition a sequence into sub-groups by an expression.

The result returns a grouped sequence with one entry for each group, which contains both the shared value, as well as all items of the subgroup as
nested sequence.

When this is not the final query operator in the expression, theinto keyword has to be used to provide a new identifier for the rest of the expression.
The identifier after group is implied to be the current LINQ query identifier, if it's omitted.

var IPeopleByAge = from p in People
group s by s.Age;

reverse

As the name implies, reverse reverses the order in which things are returned.
var x :=[1,2,3,4,5];

vary := from a in x reverse;
/1 5,4,3,2,1

distinct

distinct filters out duplicates items in a sequence, so that each unique value is only contained once in the result.
var x :=[1,2,3,2,4,4,5];

vary := from a in x distinct;
//1,2,3,4,5

take

take takes a limited number of elements from the collection and stops returning after that.
var x :=[1,2,3,4,5,6,7];

vary := from a in x take 5;

111,2,3,4,5

take while returns items as long as the provided expression returns true.

var x :=[1,2,3,4,5,4,3,2,1,0];

vary := from a in x take while a < 4;
/11,2,3

skip

skip skips a number of elements before returning from the collection. If the end of the collection is reached before the appropriate number of items
where skipped, the resulting sequence will be empty.

var x :=[1,2,3,4,5,6,7];

vary := from a in x skip 3;

/1 4,5,6,7

skip while skips items as long as the expression returns true.

var x :=[1,2,3,4,5,4,3,2,1];

vary := from a in x skip while a < 4 select a;
/14,5,4,3,2,1

See Also

e LINQ Query Expressions
e Anonymous Types

Locking Expressions

A locking expression works much like a regulariocking statement, in that it protects a bit of code to be only run from a single thread at a time. In
contrast to a locking statement, which can wrap a single code statement or a full block, a locking expression wraps access to a single expression, and its
value can be used in a wider expression outside of the scope of the lock.

Example:

var ICount := locking self do CountltemsinList();
// go on to use [Ount, unlocked

Without support for locking as an expression, the above code would have to clumsily declare a manually typed variable first, and then obtained the
count, e.g. as such:

var ICount: Integer;
locking self do begin
ICount := CountltemslnList();
end;
/I go on to use ICount, unlocked

Limitation on Island

Like locking Statements, locking expressions are limited to work onMonitor classes, on thelsland-based platforms. On the other platforms, any type can
be locked on.

See Also

e Locking Statements
e locked Method Modifier
e Locked Aspect

Raise Expressions

Much like the regularraise statement, the raise expression will terminate the current scope by raising (or re-raising) anexception. The exception will
bubble up the call stack, terminating all execution flow, until it is caught by a try/except block.

Different than the raise Statement, theraise expression can be used in place of an expression of arbitrary type — for example in anf/then Expression or
as parameter to coalesce():

var x := coalesce(a, b, c, raise new Exception('neiter a, b or ¢ were assigned');

See Also

e raise Statements

New

The new expression is used to instantiate a newClass, Record or dynamic Array type. When instantiating a class use parenthesis, when instantiating an
array type use blocks.

// creates a new instance of List<String> and calls the constructor.
var x := new List<String>;

// creates an array of integers with size 15
vary := new int[15];

// creates an array of integers with size 15
vary := MyRecord(5);

For classes and dynamic arrays, calling new will allocate the necessary space on the heap to store the data on the heap. Since records are stack based,
no allocation is necessary, and in fact the use of new on record types is infrequent.

For both classes and record, the new expression will also execute one of the type'sConstructors.

Parameters

The new expression can optionally provide zero or more parameters, to the constructor, surrounded by parenthesis. Similar to regulamethod
overloading, a type can provide multiple constructors, and the new expression will pick the constructor that best matches the provided parameters.
The parenthesis are optional (but encouraged) when no parameters are passed.

var x := new MyClass(15); // Calls the constructor with 15

Types may also provide named constructors, typically starting with the prefixwith, that can be used to further disambiguate, which constructor will be
called:

var x := new List<String> withCapacity(20);

Property Initializers

Very often, the first task after creating a class instance is to initialize some of its properties that are not set by a constructor. For example:

var b := new Button();
b.Title := 'Click me!";

Oxygene allows to add property initializers as part of the parameter list, to do this in one step. this is especially helpful when the created object is
immediately passed on to, say, a method call:

fContriols.Add(new Button(Title := "Click me!");

This extended syntax is only supported for constructors, and the property initializers must be placedafter any of the regular constructor parameters.

See Also

e Constructors
e Classes and Records
e Arrays

Constructor Call

Inside a Constructor, the constructor keyword can be used to defer construction of aClass or Record instance to another constructor on the same type,
or the ancestor class.

Used on its own, the constructor keyword calls a different constructor on the same type:

type
MyClass = public class
public
constructor;

constructor(aName: String);

property Name: String;
end;

constructor MyClass;
begin

constructor(‘My Name'); // calls the second constructor.
end;

constructor(aName: String);
begin
Name := aName;
end;
Please refer to the Constructors: Deferred Construction topic for more details.

Constructor calls accept parameters, and they can also work with named and multi-part constructors. Just as innew Expressions, the keyword can be
followed (optionally) by a name, and/or a set of parameters. Unlike new Expressions, constructor calls can not take additional properties to initialize,
but that can be done as separate statements after the constructor call.

'inherited’ Constructor Calls

In constructors for Classes, the inherited Expression can be used with constructor calls in order to defer execution to a constructor of thebase class:

constructor;

begin
DoSomeWork();
inherited constructor("Hello");
DoSomeMoreWork();

end;

'mapped’ Constructor Calls

In Mapped Types, constructors can defer defer to constructors of the original type using themapped Expression with the constructor call:

constructor;
begin
mapped constructor("Hello");
DoSomeAdditionalSetup();
end;

Please refer to the Mapped Types: Constructors sub-topic for more details.

See Also

Constructors and Deferred Construction
Mapped Types

Classes

inherited Expression

mapped Expression

e o o o o

Type Cast Expressions

Type Check Expressions

The is and is not type check expressions can be used to check if a concrete class instance is compatible with a given type - i.e. is of that type or
descendant, or implement the given interface. This is most useful with polymorphism, when a valuen is declares as a base type, and the concrete type
it might hold is not known at compile-time.

var p: Person := FindPersonByName("Peter Parker");
if p is Employee then begin
end;

The above example assumes a class hierarchy, whereExployee is a subclass of the Person class. the FindPersonByName method might be declared to
return any ind of person, and theis check is used to determine if the returned instance is of typeEmployee, or not.

The expression p is Employee will evaluate as true if the instance het byp is of type Employee, or any further subclass of Employee. It will be false,
otherwise *e.e.g id p holds Client persion instance.

is can also be used to determine of a class implements a given interface:
if p is IDisposable then begin
end;

Note that the compiler will emit a hint if it can determine a givenis check to always be false (or always be true), at compile time, for example,

because the two types are from incompatible subtrees of the class hierarchy, or from differen TObject models:
var p: Person := FindPersonByName("Peter Parker");

if p is Button then begin // Hint: will always be false, compiler knows a Person can't be a Button

end;

If the source value isnil, anis type check will always evaluate tofalse.

Negative is not Checks

While, like any boolean expression, anis type check can be negated bynot, a special is not expression is supported to allow a more convenient and
readable negative check:

var p: Person := FindPersonByName("Peter Parker");

if p is not Manager then begin

eﬁ”d:

is equivalent to the more verbose and less intuitive:

if not (p is Manager) then begin

end;

If the source value isnil, anis not type check will always evaluate totrue, correctly negating the behavior ofis.

Inline Variable Declarations

An is type check can optionally declare a new inline variable matching the new type, which will be assigned byl'ype Casting the source value to the
target type if it matches. Otherwise the new variable will benil. The new variable will valid for the remainder of the current scope.

if p is var e: Employee then begin
e.GiveRaise; // e is always assigned, here
end;
writeLn($'was employee? {assigned(e)}"); // e is still valid here, but may be nil
would be equivalent to:
if p is Employee then begin
var e:= 0 as Employee;

e.GiveRaise;
end;

See Also

e Type Cast Expressions

Discardable (nil)

A discardable is a special kind of expression that can be used as the target of anAssign Statement in order to ignore (part of) the result of the right-
hand side of the assignment.

In general, most Oxygene Expressions can be used as Statements, meaning they can be used stand-alone, ignoring a possible result. For example, a
method can be called, and its result can simply be ignored, by putting the method call as a plain standalone statement. However there are some cases
where this is not allowed, and the result of an expression must be reused or acted upon. For example, it is not allowed to access a property without
doing something with its value.

The discardable expression provides a workaround for those scenarios, by allowing to explicitly assign the result of an express "to nowhere". This is
done by using the nil keyword as the left-hand side of anAssign Statement.

There are three commonly useful scenarios for this:

e Calling into a property to trigger side-effects of its getter (for example, lazy initialization) w/o using its value
o Calling a method that is explicitly marked with the WarnUnusedResult Aspect
o Discarding parts of a Tuple Types result, while extracting others

For example:

nil := MyManagerClass.Instance; // make sure the Instance is created, but don't use it.

(a, nil, c) := SomeTupleWithThreeValues; // discard the middle value of a tuple

On the case of tuple expansion, thenil keyword can also be used in combination with aVar Statement, to declare new variables to hold some tuple
values, while discarding others:

var (a, nil, ¢) := SomeTupleWithThreeValues; // discard the middle value of a tuple, declare *a* & "¢’ fresh

See Also

e WarnUnusedResult Aspect
e Tuple Types

Address-Of (@)

The address-of expression obtains the address of aField or local variable as aPointer, or the address of aMethod as a Block. It is a prefix operator, and
applied to the left of the expression whose address should be obtained:

vari:=5;
var a := @i; // ais now an "~Integer

at:=7;
Pointers on Managed Platforms

Note that the use of pointers is only allowed forUnsafe Code on the .NET platform, and is not supported at all on theJava platform. Pointers are fully
supported on Cocoa and Island.

Blocks, that is method references, are supported on all platforms.

Use of @ is often unnecessary when obtaining block references, as the compiler can infer the intention based on surrounding code. But an explicit use
of @ can help with type inference, or resolve ambiguities (e.g. obtaining a block reference to a method that itself returns a block.

method foo(a: Integer);

var x: block(a: Integer) := foo; // compiler knows a block reference is needed

vary := @foo; // implicit @ helps infer the type because else...
var z := foo; /[... it would just call *foo" and use its result
or

type BlockGenerator = block: block; // a block that returns a block
method foo: block;

var x: BlockGenerator := @foo; // x is a block reference to ‘foo"
var y: BlockGenerator := foo; //'y is whatever block “foo" *returned*

See Also

Blocks

Pointers

Unsafe Code on.NET

Pointer Dereference (~) Operator

Unary Operators
Method Access Expressions

® o o o o o

Pointer Dereference (")

The pointer dereference expression "unwraps" a Pointer and gives access to theField or local variable that the pointer referred to. The result has the
same type as the original value, and can be used in any expression where such a value would be usable. For example, a dereferenced Integer pointer
is an integer:

vari:=5;
var a:= @i;
an:=7; // a is the same integer as "i'.

varx:=a” +5;// gives 13

De-referencing a nil pointer will result in a Null Reference Exception, and de-referencing an invalid (garbage) pointer can result in memory corruption or
crashes.

One can think of a pointer dereference as the opposite of theAddress-Off (@) Operator.

Automatic Dereferencing

When accessing members of a record through a pointer using theMember Access(.) Operator, the ~ is optional:

type
MyRecord = record
a: Integer;
end;

var x := ~MyRecord;
x".a:=5;

x.a:=5; // same thing

Note that this does not extend to calling methods or accessing properties; this is to avoid the ambiguity of invoking a method (such a3oString, on
.NET) on the pointer itself.

Pointers on Managed Platforms

Note that the use of pointers is only allowed forUnsafe Code on the .NET platform, and is not supported at all on theJava platform. Pointers are fully
supported on Cocoa and Island.

See Also

e Pointers

e Unsafe Code on.NET

e Address-Off (@) Operator
L]

L]

Unary Operators
nil Expressions

Operator Expressions

An operator expression combines a well-defined operator (such as+ or and) with either one or two expressions to its left and/or right. The result is a
new expression.

Oxygene supports expressions with a fixed set ofUnary and Binary Operators.

e Unary Operators
e Binary Operators

See Also

e Implementing Custom Operators

Unary Operators

Unary expressions are expressions where anOperator is combined with a single other expression. Unary operators can be pre-fix, meaning they come
before the expression they operate on, or post-fix, meaning they come after the expression.

Except for the ~ Pointer Dereference Operator, all unary operators in Oxygene are pre-fix.

Examples:

var a := true;
var b := not a; // result: false

5.

var x :=5;
-X; // result: -5

vary:

var f: block := @MyMethod;

var i: ~Integer;
i~ 1= 5; // de-references the pointer

Operators
The table below lists all available unary operators.

Operator Description

Reverses the value of aBoolean from true to false or vise versa

Reverses each bit of aninteger value from 0 to 1 or vice versa.

Turns a positive Integer value negative, or a negative one positive.

Opposite of negation (-), generally does nothing for most types.

The Address Of operator.

The Pointer Dereference operator.

d The old Operator, can be used to refer to the original value of a parameter orfield in a Post-Condition.

Allows access to the inherited version of the expression it precedes. Available forlMember Access and constructor
Calls

not

> @ k"

[o]

inherited

For the +, - and not operators, Custom Types can implement Custom Operators that provide type-specific behavior.

See Also

e Binary Operators
o Post-Conditions
e Implementing Custom Operators

Binary Operators

Binary expressions are expressions where anOperator is used to operate ion two expressions, one provided on its left, and one on its right (commonly
refered to as the left-hand and right-hand expression).

Examples:
ifa <bthen ...

if SomeVariable is not String then writeLn(not a String)

Operator Precedence

When used in more complex expressions, binary operators will be evaluated according to their order of precedence, starrting with the highest order.
For example in the expression 5 + 10 * 2, the multiplication will happen before the addition, resulting in25. Operators of the same precedence will be
executed from lef to right, so for the expression 10 - 3 + 8, the subtraction will happen first, then the addition, resulting in15.

The =, <, = and > operators can also be used inDouble Boolean Comparisons. Here, the middle operand will be compared both to the firstand to the
last operand, in order. Boolean Short-Circuit will apply for the second comparison:

vary := 10;
if 10 = x = 15 then
writeLn("x is between 10 and 15").

When mixed with Unary Operators, the unary operatores take full precedence. So for the expressions + -3 + 8, the value 3 will be negated first, and the
additions are then performed, resulting in 10.

Operators
The table below lists all available binary operators.

Operator Precedence Description

0 (Also >=) Greater than or equal

(Also <=) Less than or equal

Greater than

Less than

Equal

(Also <>) Not equal

Check if the left-hand value side is in theArray, Set or Flags Enum on the right..

IA IV A DA

L

O O O O oo

=

Operator Precedence Description

not in 0 Returns the oposite ofin
is 0 The Type Check Operator. Checks if the left-hand-side object is of the right-hand-side type.
is not. 0 Returns the oposite ofis
implies 0 a implies b, translates tonot a or b
+ 1 Add two values
- 1 Substract two values
or 1 Logical or binary or
xor 1 Exclusive or
il 2 Power of
* 2 Multiply
1A 2 Divide; When the Delphi Compatible Division option is set this always results in a float
div 2 Divide
mod 2 Modulus
and 2 Logical or binary AND
shl 2 Shift left
shr 2 Shift right
as 5 lele Type Cast Operator. Casts left side to the type on the right, or fails with arException. nil results in a
= nil.
+= 3 Add an event handler to anEvent
= 3 Remove an event handler from anEvent

For the +, -, */, div, mod, and, or, xor, shl, shr, =, =, <, <, >, =, in and not operators, Custom Types can implement Custom Operators that provide type-
specific behavior.

See Also

Double Boolean Comparisons
Unary Operators
Events

Implementing Custom Operators

e o o o

Parenthesis Expressions

Any expression can be enclosed inside a pair of parenthesis (...)), as needed. Parenthesis do not change the value or behavior of the expression they
enclose, but the can provide readability and - in certain cases - help with code ambiguity and/or override Operator precedence. The latter is especially
helpful when using Binary Operators.

At best, surrounding parenthesis have no effect at all:
var x := (3 + 2);

However, they can add to the readability of more complex expressions. In the following example, both statements evaluate the same (because has
precedence over +) - but while the added parenthesis add nothing to code flow, they make the expression more readable to the developer by
emphasizing that the second part executes first. In less trivial examples, that can be very helpful.

varx:=3 + 2*5;
vary:=3+ (2*5);

Parenthesis can also override operator precedence, by clearly grouping a subset of a complex set of expressions. In the following example, the
parenthesis group 3 + 2 together to make sure they are seen as one expression to be evaluated firstbefore multiplying with 5.

3+2%*5;
(3+2)*5;

var x
vary :

Parenthesis can also be necessary (or at least helpful) to resolve otherwise ambiguous code - whether it is ambiguous to the compiler or (like in the
above examples) merely to the reader:

var x := (y as String).Length;
var ¢ := (new MyClass).SomeMethod();
See Also

e Operators
e Binary Operators
e Unary Operators

Aspects

Oxygene provides full support for Attributes and Aspects.
Attributes and Aspects are annotations that can be placed on pieces of code, fromTypes to Members, in order to affect compiler or runtime behavior.

Custom Attributes can be queried for at runtime using a technology calledReflection, while Aspects (some of which are provided by the system, but
which can also be user-created) can affect and adjust code at compile-time.

The remainder of this text, and much of this documentation site, uses the term Aspects to refer to both Aspects and Attributes, for conciseness.
Aspects can be applied, where allowed, by enclosing one or more attribute names in square brackets:
type

[Obfuscate]

MyClass = public class

end;

Multiple aspects can be applied using individual sets of brackets, or by separating the individual aspects with commas. Aspects can take optional

parameters closed in parenthesis, including unnamed and named parameters.

type
[Obfuscate(PublicMembers := true)]
MyClass = public class

eﬁd;
Scope Prefixes

By default, aspects apply to the code construct they immediately precede. In some cases, this is not possible, because the exact place where an
aspect should be applied to has no direct code representation, or cannot easily accommodate an aspect. In these cases, the aspect can be prefixed
with a scope modifier, followed by a colon:

[assembly:Obfuscate]
The following scope prefixes are supported:

assembly: — applies the aspect to the entire assembly (i.e. the entire project)
module: — applies the aspect to the currentModule, on .NET

global: — applies the aspect to the Global class

result: — applies the aspect to the result type of aMethod or Property

param: — applies the aspect to a specific parameter of aMethod or Indexer Property
var: — applies the aspect to the backing field of aProperty or Event.

read: — apply the aspect to the backing read statement of aProperty.

write: — apply the aspect to the backing write statement of aProperty.

® o o o o o o o

As well as:

e aspect: — (optional/legacy) designates that the attribute is implemented via aCirrus Aspect. Can be combined/prefixed with any of the previous
prefixes.

See Also

Attributes and Aspects
Custom Attributes

Writing Custom Attributes
Writing Custom Aspects with Cirrus

e o o o

Keywords

Oxygene, being Pascal-based, is a rich and expressive language that heavily relies on keywords over obscure syntaxes to express itself. In Oxygene,
the following words are treated as keywords and have special meaning:

abstract — Virtuality Member Modifier and Abstract Classes

add — Events Add Statements

and — Boolean and Bitwise Operator, Member Visibility Levels, Combined Interfaces
array — Array Types

as - Type Cast Expressions

asc — LINQ Expressions

aspect — Aspect Scope Prefix

assembly— Type Visibility Levels and Member Visibility Levels, Aspect Scope Prefix
async — Member Modifier and Async Expressions

autoreleasepool — Auto-release Pools for Cocoa

await — Await Expressions

begin — Begin/End Blocks, Methods

block - Blocks

break — All Loop Statements

by — LINQ Expressions

case — Case Statements and Case Expressions

class — Class Types, declaring static Members and Class References
concat — LINQ Expressions

const — Constants and Local Constant Declarations

constructor — Constructors and calls to them

continue — All Loop Statements

copy — Member Modifier for Properties on Cocoa

default — Member Modifier for Properties

delegate - Blocks and Events

deprecated — Member Modifier

desc — LINQ Expressions

distinct — LINQ Expressions

div — Numberic Operator

do — For Loop Statements and Expressions, While Loops, With Statements, Locking Statements and Expressions, Using Statements, Try Block
Statements

downto — For Loop Statements and For Loop Expressions

dynamic — Dynamic Type

each — For Loop Statements and For Loop Expressions

else — If/Then/Else Statements and Expressions, Case Statements and Expressions
empty — Member Modifier for Methods

end — Begin/End Blocks and terminator for various language constructs
ensure — Method Post-Conditions

enum — Enum Types

equals — LINQ Expressions with join

event — Events

except — Try Block Statements

exit — Exit Statements and Method Results

extension — Extension Types and Extension Methods

external — Member Modifier for Methods and Fields

false — Boolean Literals

final — Virtuality Member Modifier

finalizer — Finalizers

finally — Try Block Statements

®© © 06 06 06 06 06 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

© o6 6 06 06 06 0 0 0 0 0 0 0 0 0 0 0 o

flags — Enum Types

for — For Loop Statements and For Loop Expressions

from — LINQ Expressions, For Loop Statements and For Loop Expressions

future — Future Types

global — Aspect Scope Prefix

group — LINQ Expressions

has — Generic Constraints

if — If/Then/Else Statements and If/Then/Else Expressions

implementation — Code File "Implementation" Section

implements — Explicit Interface Implementations

implies — Implies Operator

in — For Loop Statements and Expressions, In Expressions, Generic Contra-Variance
index — For Loop Statements and For Loop Expressions

inherited — Inherited Expressions

inline — Member Modifier, Arrays

interface — Interface Types, Code File "Interface" Section

into — LINQ Expressions

invariants— Invariants

is - Type Check Expressions, Generic Constraints

iterator — Member Modifier for Iterators

join — LINQ Expressions

lazy — Member Modifier for Properties

lifetimestrategy — Life-Time Strategies for Island

locked — Member Modifier

locking — Locking Statements and Locking Expressions

loop — Infinite Loops

mapped — Mapped Types and Mapped Expressions

matching — For and While Loop Statements, For Expressions, and With Statements
method — Methods, Anonymous Methods (Closures) and Local Method Declarations
mod — Numberic Operator

module — Aspect Scope Prefix

namespace — Namespaces, Code File Structure

nested — Nested Types

new — Constructor Call Expressions

nil - Nullability, nil Literals

not - Boolean and Bitwise Operator, Type Check Expressions, In Expressions, Nullability
notify — Member Modifier for Properties

nullable - Nullability,

of — Case Statements and Case Expressions, Arrays, Enums, Sets, Sequences and Tuples, Blocks and Class References

old — Method Post-Conditions

on — Try Block Statements, Locking Statements and Expressions, locked Member Modifier
operator — Operators

optional — Member Modifier for Interface members

or — Boolean and Bitwise Operator, Member Visibility Levels

order — LINQ Expressions

out — Method Parameter Modifier, Method Calls and Generic Co-Variance
override — Virtuality Member Modifier

parallel — For Loop Statements and Sequence Types

param — Aspect Scope Prefix

params Method Parameter Modifier

partial — Partial Types and Member Modifier for Methods

pinned — Pinned Local Variables

private Member Visibility Levels, Invariants

property — Properties and Property Statements

protected — Member Visibility Levels

public — Type Visibility Levels and Member Visibility Levels, Invariants
published — Member Visibility Levels

queryable — Sequence Types

raise — Events Raise Statements

raises— Member Modifier for Methods

read — Property Getters

readonly — Member Modifier for Fields, Properties, Local Variables and Local Properties
record — Record Types

reintroduce — Virtuality Member Modifier

remove — Events Remove Statements

repeat — Repeat/Until Loops

require — Method Pre-Conditions

required — Required Properties

result — Method Results, Aspect Scope Prefix

reverse — LINQ Expressions

sealed — Sealed Classes

select — LINQ Expressions

selector — Selector Expressions for Cocoa

self — Self Expressions

sequence — Sequence Types

set — Set Types

shl — Bitwise Operator

shr — Bitwise Operator

skip — LINQ Expressions

soft — Soft Interfaces

static — Member Modifier

step — For Loop Statements and For Loop Expressions

strong — Storage Modifiers for ARC

take — LINQ Expressions

then — If/Then/Else Statements and If/Then/Else Expressions
to — For Loop Statements and For Loop Expressions, Mapped Types,
true — Boolean Literals

try — Try Block Statements

tuple — Type Types

type — Type Declarations, Code File Structure

unconstrained — Unconstrained Generics

unit— Type Visibility Levels and Member Visibility Levels

unmanaged — Generics Constraints

unretained — Storage Modifiers for ARC

unsafe — Member Modifier

until — Repeat/Until Loops

uses — Namespaces

using — Using Statements

var — Fields, Local Variable Declarations and Method Parameter Modifier and Method Calls
virtual — Virtuality Member Modifier

volatile — Member Modifier for Fields

weak — Storage Modifiers for ARC

where — LINQ Expressions, Generic Constraints and Try Block Statements

while — While Loop Statements
with — With Statements and LINQ Expressions

write — Property Setters

xor — Boolean and Bitwise Operator
yield — lterators

© o6 6 o 0 06 0 0 0 0 0 0 0 0 o o

Legacy Keywords

asm — started a block of assembly code (not supported by Oxygene, but respected by the compiler for compatibility)
forward — Forward Declarations for Global Methods

function — alias for method (but must have a return type)

goto — Go To Statements

procedure — alias for method (but must not have a return type)

e o o o o

Delphi Compatibility
The following keywords are only active when Delphi Language Compatibility is enabled:

cdecl — method calling convention modifier (honored forexternal methods only)
create — allows calling Constructors using ".Create"

destructor — allows defining a Delphi-style "destructor Destroy"

finalize — allows calling Finalizers using ".Finalize"

helper — allows declaring Extensions using class helper for or record helper for
library — warning directive for platform-specific code (ignored)

otherwise — alias forelse in FPC-compatible case Statements

overload — member modifier, ignored (Oxygene allows overloading implicitly)
packed — modifier for Records, ignored

pascal — method calling convention modifier (ignored/the default)

platform — warning directive for platform-specific code (ignored)

reference to — marks a function pointer asBlock (ignored)

register — method calling convention modifier (ignored, but not supported)
safecall — method calling convention modifier (ignored, but not supported)
stdcall — method calling convention modifier (honored forexternal methods only)
strict — declares a static methods w/o access to the class metadata (ignored)

®© o6 6 0o 06 06 0 0 0 0 0 0 0 0 0 o

Platform Differences

In general, our goal is to keep the Oxygene language as consistent between platforms as possible. Most language andCompiler features discussed in
the Oxygene section and elsewhere in these docs will work the same or similar, across all Elements platforms.

That said, due to differences in the underlying platfroms, there will be a few differences. This topic will highlight the most important differences on the
Oxygene language side, and you should also check out theDifferences topic in the Cross-Platform section of this site, for a more thorough discussion
of all differences as they apply to all Elements languages.

e On .NET and Java, the block, delegate, method (and legacy) function and procedure) keywords work identically to declare a Block. On the other more-
native platfroms, only block and delegate declare a true block, while method, function and procedure deflare more traditional function pointers w/o a
"self" reference. See here for more details.

ARC and the stronf, weak and unretained Storage Modifiers are supported on platforms that use ARC,Cocoa.

The lifetimestrategy keyword for Life-Time Strategies is only supported onlsland-backed platforms.

The optional keyword for Interfaces methods is supported only onCocoa.

unsafe code is not supported on Java, and all code is assumed to beunsafe on Cocoa and Island, making the keyword ignored/unnecessary on that
platform.

Generic co/contra-variance is supported on .NET only.

Differences in Pointer References in Oxygene for Cocoa.

parallel for loops, parallel sequences and queryable sequences are currently only supported for.NET.

Special Java(Platform)-style exception handling extensions and theraises keyword will be a new platform difference, once implemented.

o o o o

o o o o

See Also

« Differences topic in the Cross-Platform section

Oxygene for Delphi Developers

If you're a Delphi user looking to get into Oxygene, either to expand your tool belt or to move to the more modern cross-platform Pascal dialect
altogether, then you have come to the right place!

This page collects all the information you need to get started, will let you explore the differences (and similarities) between Delphi and Oxygene, and
provides you with a unique look at what makes Oxygene great, from a Delphi user's perspective.

The Language

It is probably safe to assume that one of the reasons you are here is that you love the Object Pascal language.

The good news is that Oxygene is pretty much the same language that you already know and have used for years with Delphi — it is just vastly
extended with additional features (such as Future Types or Class Contracts) and small things that make life easier, like theColon Operator or Double

Boolean Comparisons).

It also cleans up a few minor idiosyncrasies and inconsistencies in Delphi's Pascal dialect to make the language (in our opinion) a bit cleaner and more
consistent. Some of these idiosyncrasies can be restored by enabling the Delphi Compatibility Settings.

Read more:

e Minor Language Differences compared to Delphi- explores the minor "cleanup" changes to the language. Things you want to be aware of as you
start coding, or as you port existing Delphi code over into the future.

¢ New Language Features compared to Delphi- gives you an overview of the major features Oxygene offers over Delphi's Pascal dialect. This
covers all the big new things Oxygene introduced over the years - features you dont need to worry about for now if you are just getting started,
but that will come in handy once you become more familiar with them.

Oxygene also includes a great tool called Oxidizer that lets you import legacy Delphi code into your Oxygene project, and have it adjusted to the
above-mentioned idiosyncrasies automatically. Oxidizer can convert code as you paste it from the clipboard, or import entire units into your project.

o Using Oxidizer to Import Legacy Delphi Code

We strongly encourage you to try and not enable Delphi Language Compatibility for your Oxygene projects, but get used to the (few, small and very
sensible) differences. Over time, you will come to appreciate them for making the language cleaner. The Delphi Language Compatibility option is
provided mainly for developers who want to share code between Delphi and Oxygene.

The IDEs

The Frameworks

When Delphi was first released in 1994 — over twenty (20!) years ago now — it introduced the VCL, a much-needed feature that made Delphi what it
was. Back then, programming to the Windows APl was painful, as the APl was procedural and based on C functions, and using a powerful abstraction
layer such as the VCL was much preferable to manually dealing with object handles and writing long case statements to handle window messages.

But in the past 20+ years, the computing landscape has changed, and all of today's platforms come with vast, powerful and mostly easy to use,
consume and extend frameworks that don't need further abstraction and are in fact hindered by unnecessary abstraction attempts.

¢ On Windows, despite what some naysayers like to make you believe, the.NET Framework has become the de-facto standard for creating
applications, services and any other kind of application imaginable. With over 10,000 classes and types, the .NET Framework Class Library
provides well-designed APIs for just about any need you may have, and third party libraries, commercial and open source, are there to fill any
remaining gaps. And not to forget that with its siblings Silverlight and WinRT, the same frameworks also take you to Windows Phone and to
ARM-based Windows RT devices, and enable you to build "modern" apps for Windows 8 and Windows 10.

e Java, too, comes with a vast set of libraries for all imaginable purposes, and onAndroid, the Java-based APIs provided by the OS are the default
"native" way to develop for the platform (Google in fact discourages the use of the C++-based "NDK" for all but corner cases like the device
driver).

e And then there are of courseMac and iOS, where the extensive, object-oriented Cocoa libraries actually are part of the operating system and its
default API. Like the other two platforms above, the Cocoa (and Cocoa Touch, as the iOS version is formally referred to) frameworks provide an
unprecedented wealth of well-designed classes and APIs that let you accomplish anything you want on iOS and the Mac.

e For sharing non-Ul business logic code between platforms, our own open sourceElements RTL library provides access to commonly used classes
and APIs in a cross-platform way with toll-free casting.

The biggest step in adjusting to Oxygene when coming from a Delphi background is the realization that there is nmmeed for a wrapper framework like
the VCL to make the OS APIs accessible, because the platforms already come with amazing libraries that, once you get used to them, you will love.

That said, the open source Delphi RTL compatibility library can help you port Delphi code that makes lightweight use of core RTL and VCL functions
and types.

The Platforms section of this site is dedicated to these libraries, and while most of the actual documentation for them can be found on the platform
vendors' sites (the great thing about not having a wrapper framework is that you can use the platform straight from the horses mouth), it will give you
an introduction and tips on how and where to get started.

Read More

These articles cover general Oxygene language, IDE and conceptual topics from a Delphi developers' point of view.

e Delphi to Oxygene: Namespaces and References
o Delphi to Oxygene: Object Lifecycle Management with GC and ARC

The following are a few articles to help get Delphi developers acquainted with the GUI frameworks used by Oxygene:

e Delphi to Oxygene: Windows Ul Development with WinForms and WPF
¢ Delphi to Oxygene: iOS Ul Development with UIKit

o Delphi to Oxygene: Mac Ul Development with AppKit

e Delphi to Oxygene: Android Ul Development

Minor Differences

Aside from the vast amount of New Language Features compared to Delphithat Oxygene brings to Object Pascal, it also provides some minor cleanup
of idiosyncrasies to make the language more consistent and a better citizen on the (semi-)managed platforms. This topic describes these "cleanups" in
more detail.

True Namespace Support

Oxygene has full support for Namespaces. As such, it does away with theunit keyword used in Delphi, and each source file starts with the keyword
instead, optionally followed by a namespace name. All types declared in a unit are part of the same namespace (unless the type declaration provides
a full alternative namespace), and multiple source files can and usually will contribute to the same namespace — in fact, it is even common for small
to medium projects to place all their types into a single namespace.

The clause syntax persists as in Delphi, but instead of listingunits to be used, it will list the namespaces that you want to be in scope for the current
source file. Any types declared in either the current namespace or a namespace that is "used" will be visible within the source file without specifying
the full namespace.

It is important to distinguish between Namespaces and References. Using a namespace only brings types into scope that are already known to the
compiler, so that they can be identified by their short name. References added to the project (.dlls on .NET, .jar files on Java and on Cocoa) in turn give
the compiler a list of places to find types in. Often, there's a direct mapping between a reference and a namespace (Ulkit.fx, for example, contains
the classes in the UIKit namespace), but sometimes that is not the case.

Read more on Namespaces and References.

0-Based Object-Oriented Unicode String

In Oxygene, the standard String type maps to the platform's default string class, which contains immutable, zero-based unicode strings. OnNET that is
System.String, on Cocoa Foundation.NSString and on Java java.lang.String.

Because Strings are true objects, they provide member methods and properties you can call to perform string manipulations, mostly obsoleting helper
libraries such as Delphi's StrUtils unit. Another important consideration is that, because strings are regular objects, the language differentiates
between a nil string reference vs. an empty (') string.

Oxygene allows the use of either single (Hello') or double ("world") quotes for string literal declarations.

Proper Private/Protected Visibility

In Oxygene, the private and protected Visibility Levels truly have the visibility implied by their names: private members are truly private to the individual
class; protected members are only accessible to descendant classes. In Delphi, both of these keywords allow unchecked access to private and
protected members of all classes in the same unit — which is unclean.

Recent versions of Delphi have introduced newstrict private and strict protected visibility sections that mimic what Oxygene's private and protected
visibility types do out of the box.

The unit and unit or protected visibility can be used to obtain an effect similar to Delphi's interpretation ofprivate/protected.

Delphi also supports a published visibility type that behaves mostly identical topublic. This visibility is not supported or needed in Oxygene.

Nameless Constructors and the new Keyword

Oxygene uses nameless constructors (and optionally constructors with Cocoa'swith* naming convention) instead of Delphi's convention of using
regular method names, commonly starting with Create. This goes along with the operator, which is used for instantiating objects.

The use of Create is not supported in Oxygene by default, neither for declaring constructors, nor for calling them.

No Destructors, but Finalizers

Oxygene does not support the concept of destructors, since all of its supported platforms useGarbage Collection or Automatic Reference Counting. As
such, the destructor keyword is not supported.

As a slightly related concept, but not 100% comparable to destructors, Oxygene supportsFinalizers to allow objects to perform cleanup when they are
released. Unlike Delphi's destructors, finalizers will be automatically called by the runtime as needed, and will/should never be called explicitly.

Methods

While still supported, Oxygene deprecates the procedure and function keywords and favors the method keyword to be used for all method
declarations.

The reasoning for this is two-fold. For one, Pascal traditionally calls things by their name — andVethods are something fundamentally different than
the actual functions and procedural of pre-OOP procedural programming. For another, in modern Pascal it seems unnecessary and arbitrary to
distinguish between methods that return a result and those that do not.

:= vs = Operator

Oxygene employs the standard Pascal:= assignment operator in two places where Delphi uses the plain= operator:

o Default values for method parameters are indicated using :=, such as:
method Foo(a: Int32; b: String := 'default');

This is to emphasize that it's really a default assignment to the parameter that is happening here, not an expression of equality.

e Similarly, fields, properties and local variables can be pre-initialized using a fMyField: Int32 := 5; syntax; differing from Delphi's const fMyField: Int32 =
5 syntax. Once again, the point is that the field is not a constant, but merely pre-initialized and that an assignment is being expressed, not an
equality.

Oxygene continues to use = for actual constant declarations, such as const MY_CONST = 5;, as here a constant is declared to beequal to a given value.

The syntax for so-called "typed consts" is supported, but members defined with this syntax are pure constants and cannot be modified; in essence,
const works the same whether a type is specified or not (symmetrical to how it works to define a variable, whether a type is specified or omitted - a
feature we call Type Inference).

Unsupported Member Modifiers

Delphi supports a plethora of method flags that are unnecessary or have no relevance on the platforms supported by Oxygene, and are thus not
supported. These include:

o The stdcall, cdecl, pascal, register, safecall flags, used in Delphi to indicate the lower-level binary calling convention to use for the method, are not
supported or necessary in Oxygene.

The overload flag is not supported or necessary in Oxygene, method overloading is supported by default.

The library, platform and deprecated "cross-platform" warning flags are not supported in Oxygene.

The dynamic keyword, used by Delphi to indicate an alternative technique for method virtualization, is not supported in Oxygene.

The reference to keywords are not supported.

e o o o

All of these keywords can be used (in most cases to be ignored) via theDelphi Compatibility Settings.

Implicit var/out in method calls

In Oxygene, when passing values by reference to a method declared with thevar or out keyword, it is necessary to prefix the passed parameter with

the matching var or out keyword. This makes sure that it is obvious from the call site that the parameter is passed by reference, and can be modified
by the called method.

In Oxygene for Cocoa, the var or out keywords can also be used to call framework APIs that are defined to take object pointers - which essentially are
C's and Objective-C's way of passing by reference.

Generics

Recent versions of Delphi have begun implementing support forGenerics, and the basic syntax for declaring and using them - via type parameters in
angle brackets - is the same in Oxygene and Delphi. Unfortunately, while Delphi borrowed the basic syntax from Oxygene, which brought it to the
Pascal landscape first, Embarcadero chose to use a different syntax for declaring Generic Constraints.

Oxygene uses the keyword and a rich syntax for declaring the various different types of constraints, such ass IFoo, or has constructor. It does not
support Delphi's constraint syntax.

Different behavior of the div and / Operators

In Oxygene, the div and/ division operators always derive their result from the type of the input parameters. Dividing two integers will result in an
integer; dividing floats will result in a float. This is consistent with how all other operators behave as well.

The "Use Delphi-compatible division operators" project option can be used to change this behavior. SeeDelphi Compatibility Settings for details.

Improved with Construct

Oxygene drops Delphi's inherently unsafe with construct and replaces it with a new construct that forces the declaration of a new variable name to
access the scope of the with clause. This preserves many of the benefits of thewith feature as found in Delphi, without the dangerous scope conflicts.

Of course, the Inline Variable Declarations support in Oxygene makes the new with rarely used these days.

No initialization and finalization Sections

Oxygene does not provide support forinitialization and finalization sections, nor any similar functionality because no concept exists on the
underlying platforms that would allow to reliably reproduce the functionality provided by these features in Delphi - namely to execute particular code
at startup or shutdown of the application.

Depending on your design goal, there are several avenues to consider for providing the necessary functionality. If the purpose of thénitialization
section is to initialize a type or types defined in the module, Class Constructors might be an appropriate solution, and are
available on all platforms. If you are trying to register types or information for later consumption, consider using Custom Attributes (on .NET and Java)
or other infrastructure provided by the runtimes on all three platforms for querying available classes.

Delphi-style GUIDs in Interface Declarations

Oxygene does not support Delphi-style GUIDs in Interface declaration, unless the Delphi Language Compatibility Options are turned on. You can use
the [Guid] Aspect, instead.

No Resource Strings

The resourcestring keyword is not supported in Oxygene. Each of the platforms targeted by Oxygene has unique (and usually intuitive and simple to use)
ways to deal with localized strings, but they are not tool-chain compatible with having resources strings defined in code.

See Localizing Applications for platform-specific topics on how to deal with localization.

Pointers and "Unsafe" Code

As a managed environment, .NET and Java provide limited support for pointers and directly manipulating memory. In general, this is not a problem
and most code that relies on pointers can, with a little effort, be rewritten to run fully managed and verifiable - this is the recommended approach.

On .NET, Oxygene supports writing so-called Unsafe Code by setting the appropriate project option and marking methods with theunsafe keyword. The
term "unsafe" here does not reflect that such code is inherently bad or broken, just that it (potentially) performs memory actions that cannot be
verified as "safe" by the runtime. As such, the runtime may impose restrictions on unsafe code, for example when running applications from the
network, in specific host environments, or in other low-trust scenarios, such as on phones or on WinRT.

Where possible, unsafe code should be avoided, but the option is there if needed. Please refer to thddnsafe Code topic for more details on this.
On Cocoa, which we sometimes like to refer to as semi-managed, pointers and other code constructs common for "unmanaged" code are available.

On Java, "unsafe" code is not supported at all.

Interface Method Renaming

Delphi for Win32 uses the '=" operator to implement interface methods under a different name should conflicts arise, such as:

procedure MyFooBar;
procedure IFoo.bar = MyFooBar; // maps the MyFooBar method to the IFoo interface

Oxygene does not provide this syntax, but uses theimplements keyword to achieve this (and provide a lot more flexibility in the process). Refer to the
Interface topic for more details.

Record Initializers

Oxygene uses named parameters to initialize a record and class fields and properties.

var x := new MyRecord(Fieldl := 'test', Field2 := 15.2)

This syntax works in both definition and in code blocks.

Delphi does not have a syntax for this that works inside blocks, but it does have one for constants:

const p: TPoint = (x: 15; y : 16);

This syntax is not supported in Oxygene.

Minor Items

.

Oxygene does not allow access to the outer result variable from inside a nested local method.

Oxygene does not allow you to re-declare a local variable in a nested method, if a variable of the same name is also declared in the outer
method.

You are not allowed to compare Booleans with the > and < operators.

Oxygene requires the exact number of array parameters, as the array defines when accessing array members. For an array of array of integer it
requires MyArray[dim1][dim2], for anarray[0.., 0..] of Integer it requires the MyArray[dim1, dim2] syntax.

e Variant records are not directly supported in Oxygene, except on Cocoa.

.

o o

Inline Assembler Code

Since Oxygene compiles against many different target platforms, including IL, JVM, x86, x64 and ARM, it does not provide support for thesm keyword
and inline assembler code.

New Features

Oxygene has come so far from where Delphi left the Pascal language when it stopped innovating in the late '90s that it's hard to provide a simple and
concise overview of what's "new" in Oxygene for Delphi developers - there's just so much.

This topic will try to provide brief sections on most of the major improvements and new language features that Oxygene provides, covering them with
a brief introduction and then linking off to the main language documentation where you can find more details.

Pretty much all of these features, with the one exception ofGenerics, will be new to you, whether you are coming from Delphi 7 or a more recent
Delphi version such as XE7, because the Delphi language really hasn't changed much over the past 15 years.

Types

While pretty much all code in Oxygene lives inside types, this first section looks at newkinds of types that Oxygene introduces (such as tuples and
sequences), and fundamentally new things you can do with types (such as nullability). Let's get started.

Sequences

Sequences are a special type that exist on a similar level toArrays, and can also be thought of as a collection of elements.

Different from arrays, sequences do not imply a specific form of data storage, but can represent any collection of elements that is accessible in a
specific order. This could be an array (and as a matter of fact, all arrays can be treated as a sequence) or a different data store.

One major advantage of working with data via sequences is that your code can start to work on the first items of a sequence before the entire
sequence has been generated. Your code might even stop working the sequence at some point, and the remainder of it never will be generated. This
allows for some pretty powerful use. For example, you can query a large database table, and have rows fetched as you need them. You could even
have an infinite sequence that generates all the digits of Pi, and choose to process only the first 10,000.

Sequences are defined with the sequence of keyword combo, parallel to arrays:
var ICustomers: sequence of Customer;

Sequences can be looped over with the regularfor each loops that recent versions of Delphi have also introduced, and they also work great witiLINQ
and Oxygene's from expression syntax for LINQ.

Aside from many APIs in the frameworks that already expose sequences, thelterators and For Loop Expressions features discussed below help you
define your own sequences in Oxygene.

Tuples

Tuples are the second new kind of "container" type introduced by Oxygene. You can think of a tuples as a group of two or more strongly typed
variables that can be used and passed around in combination - for example passed into or returned from a method.

Each member of a tuple can have a different, well-defined type (for example, you can have a tuple of a number and a string), but different than a
record, members of a tuple have no individual names. Commonly, tuples are used in a more light-weight fashion, in places where declaring an explicit
record type somewhere else would seem overkill.

Types are defined with the tuple of keyword combo:
var |Error: tuple of (Integer, String) := (404, "Page not found")

You can access individual members of a tuple using their numeric index, such aslError.0. You can also assign tuples back into individual variables by
using a tuple literal on the left side of an assignment:

(ICode, IMessage) := WebRequest.GetError();
Future Types

A Future Type is variant of a type that promises to have a value at a later time, but that value might not be calculated or obtained yet, and may be
derived either asynchronously in the background, or the first time the future's value is accessed.

Any ordinary type known in Oxygene can be used as future by prefixing its type name with thefuture keyword:
var ICount: future Integer := ISomeSequence.Count; // the count of a sequence might be costly to determine

An ordinary future as in the example above will be evaluated the first time the value is accessed. All future access to the variable will use that same
value. In essence, the future enables ICount to be referred to multiple times, but ensures it won't actually be calculated until (and unless) it is actually
accessed. Within any subsequent code, ICount can be used just as if it were an ordinary Integer, so it could for example be used in arithmetic
expressions such as ICount/4+ICount.

Futures really shine when used in combination with async expressions, as covered below. A future initialized with an asynchronous expression will start
calculating its value in the background automatically, so it might already be available when first accessed. As such, futures really help writing
parallelized code that can take advantage of multi-core CPUs, with very little work.

Anonymous Classes and Records

Anonymous Types provide a syntax to quickly define and instantiate a simple class - commonly containing only data, but no code - from inside the
code that will use it. Anonymous classes are not often used on their own, but they really shine when used in combination with Sequences and LINQ, as
they enable you to filter down or combine data from sequences into new objects on the fly.

For example, as you are processing a lot of Customers and their Orders, you might want to generate a new list that contains each Customer and their
total order volume, and then loop over that list. Anonymous classes make that easy without having to clumsily define a class for this. In particular, the
select clause of LINQfrom expressions will commonly define new anonymous classes.

Anonymous classes are defined using the new class keyword combo:

var ICustomerData := new class(CustomerlID: ICustomerID, OrderVolume: |Orders.Sum);
Anonymous Interface Classes

Anonymous Interface Classes are very similar to anonymous classes, and are used to define a new class inline that satisfies (i.e. implements) a given
interface. This is commonly used on the Java and Android platform, where rather than Delphi- or .NET-styleEvents, controls usually are assigned a
delegate object that implements a given interface in order to receive callbacks when events happen - such as to react to the click of a button.

Anonymous interface classes allow you define such a class inline and implement one or more handler methods without having to implement the
interface on the containing class (which can be awkward if you need to provide different handlers to different controls - for example two different click
events on two different buttons).

You can think of anonymous interface classess as an extension or a more sophisticated version oAnonymous Methods. In fact, an anonymous method
is considered the same as an anonymous interface class with just one method.

Anonymous innterface classes are defined using the new interface keyword combo:
fButton.delegate := new interface(OnClick := method begin

// handle the click here
end);

Partial Types

The Partial Types feature allows the definition of aClass or Record to be split across two or more source files. This is mainly used for three different
types of scenarios:

o Complex or very large classes can be split up to keep the individual code files more manageable.

o Classes that are shared across platforms (for example viaShared Projects can have one part that's shared, and another that provides platform-
specific logic, without needing excessive $IFDEFing.

e Some Ul frameworks, such as WinForms and WPF will use one part for user code, while a second part is maintained by the visual designer or
build tool chain.

Nullability

In Oxygene, like Delphi, simple value types that are stored on the stack will always have a value (aefault of 0, if not otherwise initialized), while
reference types (mostly Class) that are stored on the heap will benil unless initialized.

Oxygene, however, provides a way to override this. A variable, field or parameter of value type can be marked aswllable type to indicate that it will
default to (and can be assigned) nil. Similarly, a variable of reference type can be marked asnot nullable, causing the compiler to enforce it to always be
assigned a valid value and never be nil.

Most interestingly, and unique to Oxygene and the other Elements languages,nullable value types can be used in code, including arithmetic
expressions, just as their regular counterparts. The Nullability will filter through, so that any expression using anullable type will in turn also be nullable
- and in true tertiary boolean logic, an actual nil value in an arithmetic expression will turn the whole expressionnil.

var x := nullable Int; // nil
vary :=5;
var z := 10*x+y; //z will be nullable, and nil

You can read more about nullability here.

Mapped Types

Mapped Types are a unique feature of the Elements compiler that lets you create compatibility wrappers for other types.

Type Members

That covers actual types, and as you see, Oxygene has quite a lot to offer. Next, let's have a look at what you can davithin those types (and in
particular, Class or Record. It's also worth mentioning that in Oxygene, Records are elevated to be pretty much as powerful as classes: In addition to
fields, they can contain properties and methods, just like their siblings.

Pretty much the only difference between the two kinds of types is that classes areheap based - they get created in memory as needed, and variables
refer to their memory location. More than one variable can point to the same class instance, and you can pass class instances all around your program.
Records are stack based and value types. Two variables of record type will always point to unique copies of the record, and passing a record as
parameter or assigning it to a second field or variable will create a copy of its data.

Advanced Fields

Fields in classes and records work and behave pretty much as you know them from Delphi. The only new feature for fields is that they can be marked
with the readonly directive, which indicates that they can only be written from theConstructor or via an initializer, but are then immutable.

Fields can also be initialized in line, and when they are, their type can be omitted if it can be inferred from the initial value.

fCount := 5; readonly; // fCount will be an Integer
Advanced Properties

Just like fields, Properties in principle work as in Delphi, but as mentioned above are also supported inRecords, not just Classes.

That said, Oxygene vastly expands the syntax for declaring properties, making them a lot more convenient to define and work with. All of these
features are covered in detail in the Properties section.

e Like fields, properties can me marked readonly.
o Like fields, properties can be initialized inline.
e Properties can be declared withoutread and write clause, and will automatically be backed by an implicitly created field.

e Properties themselves can be marked virtual and be overridden, which is cleaner than relying on virtual getters/setters as Delphi does.

e Properties can be defined inInterfaces.

Properties can define different visibility for the getter and setter, for example letting you declare a property that ipublic readable but only private
or protected writable, which can be very powerful.

Properties can be marked aslocked to synchronize their access to be thread-safe.

Properties can be marked to generateNotifications when they change, via the notify directive.

Properties can be marked aslazy and have their initialization deferred until they are first accessed.

Properties can use more complex expressions than just a field or method name for theirread and write statement.

.

e o o o

Advanced Methods

Methods also work just as in Delphi, and are supported inRecords as well, not just Classes. As mentioned in the Minor Differences topic, Oxygene
introduces a new method keyword that we recommend to use for methods, instead of the oldprocedure and function keywords. It emphasizes the Object-
Oriented nature of Oxygene, and deemphasizes the largely irrelevant difference of whether a method returns a value or not. But procedure and function

still work as well, in Delphi Language Compatibility Mode.
But once again, Oxygene expands the syntax for declaring methods, all of which is covered in detail in theMethods section.

o Like properties, methods can be marked aslocked to synchronize their access to be thread-safe.

e Methods can me marked as async to indicate that they will automatically execute in the background.async methods with a return value will
return a Future.

e Methods can me marked as empty if they are placeholders that perform no function. This saves creating an empty method body.

o Methods can be marked asinline, and their logic will then be embedded into the calling code for performance optimization.

In Oxygene, methods can use a new "multi-part method name" syntax that embracesCocoa naming conventions (but is available on all platforms, and
for all languages) and makes for more readable and expressive method calls. You can read more in the respective section in the Methods topic.

Methods can also define pre- and post-conditions to validate their arguments and their results, which is covered further down on this page and under
Class Contracts.

Iterators

Iterators are a special kind of method that makes it easy to implement dynamically generatedSequences. Marked with the iterator directive, an iterator
method can write regular linear code that can use the yield statement to add values to the sequence.yield works similar to exit in that it returns a value,
except that the execution flow of the iterator method keeps going, because the returned value is just one of many that make up the final sequence.

Multi-Cast Events and Blocks

Oxygene introduces a new kind of member for classes and records:Events. While in Delphi events are essentially properties of a special type, and thus
get no special syntax, events in Oxygene are fundamentally different and separate from regular properties, and are defined with the event keyword.

Events are multi-cast, meaning that more than one handler can be assigned to an event using ther= operator that Oxygene introduces exclusively for
events. When the event is triggered, all assigned handlers will be called.

Multi-cast Events are almost exclusively used on the.NET platform, since the Cocoa, Java and Android platforms have different default mechanisms to

deal with this concept - such as the Anonymous Interface Classes discussed earlier on Java, or more traditional delegate classes on Cocoa. But the
Event syntax and infrastructure is nonetheless available on all platforms, should you wish to use it.

Custom Operators

Finally, Oxygene allows you to define Custom Operators for your classes and records, allowing them to participate naturally in arithmetic expressions.
For example, you can define the + operator for a record representing a Complex number or a Matrix, allowing code that consumes the new record (or
class) to seamlessly add two values together.

You can read more in the Custom Operators section.

Statements

We've now covered both types and their members, so next, let's take a look at what Oxygene lets you danside those members, most particularly
Methods-like members, in terms of the kinds ofStatements you can write.

Inline vars and Type Inference

Most prominently, Oxygene does away with the need for an explicitvar section at the top of each method whereall the method's local variables need
to be declared.

Instead, Oxygene lets you declare variables throughout the flow of your method where they are needed, with the newar statement. This makes code
easier to understand, as variables can be declared closer to where they are used, and even inside nested scopes, such as if blocks or Loops.

More importantly, the var statement supports type inference, so you can, for example, assign the result of a method call to a new local variable without
restating (or even knowing) the exact type. Variables defined with inferred type will of course still be strongly typed.

Type Inference is of course especially important when working withAnonymous Types discussed above, since these classes don't evenhave a known
type name that could be explicitly stated. Type inference is the only way to declare a variable holding such a type (or a Sequences of such types).

Infinite Loops

Mostly a curiosity but handy at times, Oxygene introduces a new loop type that runs indefinitely, with theoop keyword. A loop loop, also called an
infinite loop, has no pre-determined exit condition and keeps running until it is broken out of with break or exit.

While not used often, loop does make for cleaner code and lets you avoid awkward and unintuitivewnhile true or repeat until false loops.
Improved For Loops

for loops have also bee greatly expanded in Oxygene.

For one, Oxygene adds a new for each/in variation in addition to the trustedfor/to loop. for each loops run over all members of a collection,Array or
Sequences, without your code having to maintain an indexer manually. (More recent versions of Delphi have adopted this loop style as well, so you
might already be familiar with it.)

for each loops also have two advanced syntaxes.

* Via the index keyword, you can introduce a second loop variable that keeps track of the count of loop iterations, without you having to increment

the variable yourself. Essentially, index gives you the best of bothfor each and for/to loops, in one.
« Via the matching keyword, you can limit the loop to only execute for those members of a collection that are of a specific sub-type.

Currently on .NET only, both loop types can also be made to run multiple loop iterations in parallel on different threads, via thearallel keyword.
Exception Handling

Exception Handling has been expanded over Delphi's in two ways:

e A single try block can be followed by both afinally block and one or more except blocks. There no longer is any need to nest twotry blocks just to
leverage both types of handler.

o except blocks can be expanded usingwhere clauses to further filter which exception a given block will catch, using criteria other than just the
mere exception type.

Advanced Case Statements

Oxygene expands the case statement to be more flexible.case statements can work on strings (smartly using a hash table in the background for
efficiently finding the proper case to execute). This not only saves code over needing to write multiple if/else if/else if statements, but is also faster.

The case statement can also execute different branches based on thetype of its parameter, via the newcase/type of syntax.

Refer to the case Statements topic for more details.
Locking

Similarly to the locked directive on Methods and Properties already mentioned above, thelocking statement can protect a section of code against
parallel execution on multiple threads, making it very easy to write code that is ready for parallelization. Via its parameter, the locking statement gives
you flexibility for how granularly to synchronize execution - for example per instance, or globally.

Using

While Oxygene uses GC or ARC on all platforms and you do not usually need to worry about memory and object lifetime management, sometimes your
code will interact with external resources (such as file or network handles) that do need to be released in a clean and timely fashion.

The using statement allows you to write a block of code that will run and make use of a specific object and automatically dispose of the object at the
end. Essentially, using is a convenient way to encode atry/finally block that makes sure your object and external ("unmanaged") resources get cleaned
up.

Expressions
With statements out of the way, let's look at some of the improvedExpression types Oxygene provides.
Colon Operator

Small but immensely powerful, the Colon (:) Operator is a team favorite of all the features in Oxygene.

Delphi and Oxygene normally use the Dot () operator to access members such asProperties or Methods of a class reference. This is something so
natural and so frequently done, we mostly don't even think about this as a special expression.

When trying to access a member of a class reference that happens to benil, an exception is raised. In Delphi, that is the dreaded Access Violation
straight from the CPU, in Oxygene it's a Null Reference Exception, often chummily called "NRE".

NREs are great when they happen on truly broken code, as they report the failure in a clean and obvious manner. But oftentimes it would be nice to be
able to write code that doesn't need to care if an object isnil or not. That's where the Colon ¢) Operator comes in.

If you use : instead of . to call a member, Oxygene will automatically check whether the object you are trying to call into is valid or not. If the object is
valid, the call will proceed as normal, same as with .. But if the object isnil, then rather than raising an NRE, Oxygene will just skip the call altogether
and return nil as the result.

Consider this example:
var IKnownSiblings := ISomeObject.Parent:GetChildren();

This code will call the GetChildren method of the object from theParent property of ISomeObject. But what if Parent is not assigned (for example because
data is incomplete, or because ISomeObject is the root of the hierarchy)? Because the code uses:, the call to GetChildren will simply be omitted, and
IKnownSiblings will be set tonil.

The Colon (:) Operator allows you to write code that's simpler (often avoiding many nestedif assigned(...) checks) and less error prone.
Double Boolean Comparisons

Double Boolean Comparisons allow you to compare three values in one step with a ternary operator - for example to check if a given value falls
between two boundaries.

if 5 <= Count <= 10 then writeLn('between five and ten');
Lambda Expressions

[Lambda Expressions] provide a convenient shortcut syntax for writing shortAnonymous Methods without the overhead of a full method/begin/end
declaration. Lambda expressions are commonly used for single-statement methods, where they consist of an (optional) parameter list, the special ->
operator, and the single statement. For example:

var IFives := IMyCollection.Where(x -> x.Value = 5); // filter list to items with value 5

Lambda expressions can be used anywhere anonymous methods can be used - for example aevent handler assignments or as Block parameters to
methods. One very common scenario, as shown in the example, is to use them with the LINQ query operators.

If Expressions

if expressions take the regularif statement and allow it to be used for expressions. As such, theif expression evaluates a condition, and then returns
one value or the other.

var ILabel := if IList.Count = 1 then 'ltem' else 'ltems’;

Case Expressions

Similar to if expressions, case allow the regularcase statement syntax to be used as an expression to return a conditional value:

var ICountString := case IList.Count of
0: 'none’;
1: 'one’;
2: 'two’;
else 'more than i can count’;
end;

For Loop Expressions

You are probably seeing a pattern here. For Loop Expressions are the expression version of the regularfor loop statement. Since a for loop, by its
nature, can run for many iterations, the result of a for loop expression is a Sequences of values:

var ISomeEvenNumbers := for i := 1 to 100 yield i*2;

Similar to lterators, for loop expressions use theyield keyword to add a value to the generated sequence. Also like iterators, the value of &or loop
expression merely represents the functional logic for generating the sequence. The loop code does not actually run until the sequence is enumerated.

Async Expressions

async expressions allow a statement or an expression to be executed and evaluated asynchronously on a background thread, returning &uture Type.

Calling an async expression will return immediately, and execution will begin in the background (immediately, or once a free thread is available based
on system resources).

Await Expressions (.NET)
Available on .NET only, the await expression construct can be used to "unwrap" otherwise asynchronous code so that future results can be dealt with

in a linear fashion. Under the hood, await will break the method into different parts, scheduling them to be executed asynchronously once the awaited
actions have been completed.

Please refer to the await Expressions topic for more details.

From (LINQ) Expressions

A huge topic on their own, from expressions provide a rather sophisticated sub-language that allows you to use an SQL-like syntax to work with
Sequences of objects in a strongly-typed fashion. They form the basis ofLINQ support.
var [FilteredData := from c in ICustomers
where c.Name.StartsWith('0") // filter by name
order by c.DateOfBirth // order by date
select c.Name, c.Address; // and return only two fields
// via a new anonymous class

Note: Although LINQ technology originated on.NET, Oxygene makes it andfrom expressions available on all platforms.
"is not" / "not in"

Oxygene expands the standardis type check operator and thein operator that checks for membership in a set to allow for more natural use with the
not keyword.

if not (x is Button) then ... // traditional Delphi
if not (5 in MySet) then ... // traditional Delphi

if x is not Button then ... // Oxygene
if 5 not in MySet then ... // Oxygene

Class Contracts

Last but not least, Oxygene introduces a major language feature calledClass Contracts that allows you to write self-testing code in a "Design-by-
Contract" fashion.

Class Contracts consist of two syntax features:

« Inside method implementations, you can add code to check for pre-conditions and post-conditions using therequire and ensure keywords, as
shown in the "Method Implementation Syntax" section of the Methods topic.

e On a class (or record) level, you can define Invariants that are used to define a fixed state the type must fulfill at any given time. This makes it
easy to detect bugs where any method or property setter leaves the type in an inconsistent state.

You can read more about these features in theClass Contracts topic.

Version Notes

o Type Inference for properties is new inVersion 8.1.

Migrating Delphi Code to Oxygene

Delphi is more than a language, it is an entire development eco-system with libraries, third party components, and more. Oxygene shares its basic
language - Object Pascal - with Delphi, but it does not share the rest of the eco-system.

While simple pure-pascal Delphi code should easily migrate to Oxygene without many changes, most complex Delphi projectswill need adjustment -
minor or major - to get the code base over to Oxygene. Whether it is gto adjust for (minor) language differences, or different platform APIs.

Oxygene provides tools and libraries on many levels to help you get your Delphi code into Oxygene.

Note that it might not make sense for every project to migrate fully to 100% Oxygene, depending on how deeply your project depends on things such
as VCL, TDataSet, or Delphi-specific third-party components.

New Oxygene code can also interact well with code compiled in Delphi, for example usingHydra, direct P/Invoke, COM, orexternal method imports.

Preparing Your Delphi Code for the Oxygene Language

Leaving aside differences in available APIs (Delphi RTL, VCL, etc. vs. what is available on thePlatforms targeted by Oxygene), most Delphi Object
Pascal code should compile easily in Oxygene, with no or very few changes.

But there are a few arreas you might want to look at:
Minor Language Differences

Oxygene branched off from Delphi around the Delphi 7 time-frame, so its language design isvery close to that of Delphi, and mainly focuses on
extending the language, rather than diverging from it. That said, there are a few areas where we made explicit design choices to differ in syntax, and a
couple others where Delphi gained features later than Oxygene, and chose different syntaxes where Oxygene's preceded (for example,Generic
Constraints).

These differences are documented in the Minor Differences topic, and virtually all of them can be solved by one of two options:

¢ Enabling the Delphi Compatibility Settings for your project or individual file.
e Running your Delphi code through Oxidizer for Delphi.

The first option leaves your code unchanged, and lets the compiler accept more Delphi-isms in code than it does in normal Oxygene mode. This is
especially great if you want to share code between Oxygene and Delphi, rather than migrating it fully to Oxygene-only.

The second option adjusts your code, to automatically change (where possible) legacy Delphi syntax into the correct Oxygene variant.

It is perfectly valid to useboth options in combination, as well.
New Keywords

Oxygene has added (and keeps adding) a /ot of new language features to 2004-style Object Pascal, and with that comes the introduction of a range of
new keywords to support those features.

Many of these keywords are (just as in Delphi) limited to specific contexts, and this will not interfere with your regular code much (for example, order is
used only within LINQ Expressions, so you will have no problem using it as a regular identifier in your code. Others (such as for examplevent or new
are global keywords, and if your Delphi code uses them as identifiers (for example as name of a class or field), this will cause compile time errors.

Oxygene has a few ways to mitigate this:

« In Oxygene, any identifier after a "" will not be treated as a keyword, asno keyword is valid in that context. This means that in many cases,
when accessing methods, properties or fields with Oxygene keywords as names, this will compile just fine.

o For all other cases, Oxygene allows the use of an ampersand (&") before a keyword to "escape" it, and use it as a regular identifier.
var &Event: SomeClass; // & escapes the "event" keyword
x := MyClass.Event; // no escape needed after "."

Of course, for a large Delphi code-base, manually escaping any such cases could be a lot of work, that's why Oxygene comes with a tool that allows
you to bulk-escape all known Oxygene keywords (that are not also keywords in Delphi) found in your code.

e Escaping Oxygene-only Keywords in your Code

Note that Keyword Escaper is a one-time process that you should run on your Delphi codebefore starting to use Oxygene-specific features in it. If your
code already uses Oxygene-only keywords, running Keyword Escaper will most likely break it!

Smarter {$IFDEF...} Processing

Oxygene uses a smarter (but in some cases more restrictive) pre-processor for{$IFDEF...} and other related directives forConditional Compilation.

While not recommended, if your code depends on "unstructured"$IFDEFs and cannot be easily reworked, you might want to - at least temporarily -
enable the (undocumented) UseLegacyPreprocessor project setting my manually setting it in your.elements project file.

API Differences

Finally, a big difference when moving Delphi code to Oxygene is the availability of APIs, which is virtually completely different between the Delphi
RTL/VCL ecosystem and Oxygene, which uses each platform's native APIs and class libraries (e.g. the .NET Base library on .NET, Java/Android classes
on Java and Apple's Cocoa classes onmacQOS and iOS.

By default, pretty much none of the classes and standard System methods you are familiar with from Delphi will be available in Oxygene.

In particular, Oxygene uses each platform's native Object class as the root of the class tree, which notably does not have a.Free method (as all Oxygene
platforms use automatic life-cycle management.

Oxygene also uses the native String type, which on all platfroms is reference based, read-only, and 0-indexed - compared to Delphi's speciaktring type
that's writable, 1-based and a copy-on-write value type.

The open-source Delphi RTL library can mitigate some of this, it can be used by adding the "Delphi" library reference to your project and adding the
RemObjects.Elements.RTL.Delphi hamespace to youruses clause of individual files, or to the globalDefaultUses project setting.

Delphi RTL provides:

* An TObject alias type and extensions that provides Delphi-Compatibility for that class, including the ability to callFree (even though the calls will
be ignored as Oxygene relies on GC or ARC to actually free objects.

o Areplacement string type that behaves like Delphi's string, with seamless bridging semantics to the platform's native Strings.
e Clean implementations of many (but far from all) common methods and classes from Delphi's RTL, such asSysUtils and the like.

You can read more about Delphi RTL, here.

Oxidizer

// todo.

For now, read more aboutOxidizer in the Tools section.

Keyword Escaper

Oxygene has added (and keeps adding) new language features not available in Delphi, and with that comes the introduction of a range of new
keywords to support those features.

While many of these keywords are (just as in Delphi) limited to specific contexts and this will not interfere with your regular code much, some
keywords are global, and must be escaped using "&" to be used as regular identifiers (or the identifier can of course be renamed to something else),
unless used after a period (".").

Oxygene provides a "Keyword Escaper" tool that can automate this process for you. Keyword Escaper, available as part of theDxidizer Command-Line
Tool, can process a single file or a full folder hierarchy, find all usage of Oxygene-only keywords in your code, and escape them, where needed.

Note that Keyword Escaper is a one-time process that you should run on your Delphi codebefore starting to use Oxygene-specific features in it. If
your code already uses Oxygene-only keywords, running Keyword Escaper will most likely break it!

Usage
To use Keyword Escaper, you run the Oxidizer.exe tool that ships with Elements, passing the--escape-keywords command line switch.
Keyword Escaper requires two additional parameters, the input file or folder, and the output file or folder.

¢ When specifying an individual file, both input and output must have a.pas file extension. Keyword Escaper will read the input, process it, and
save it under the output name, potentially replacing the existing file.

e When specifying a folder, Keyword Escaper will process all.pas files in the folder and all its sub-folders, and recreate the same folder structure in
the output destination. (It will not process or copy any other files)

C:> Oxidizer --escape-keywords-only <SourceFile>.pas <TargetFile>.pas
C:> Oxidizer --escape-keywords-only <SourceFolder> <TargetFolder>

mono Oxidizer.exe --escape-keywords-only <SourceFile>.pas <TargetFile>.pas
mono Oxidizer.exe --escape-keywords-only <SourceFolder> <TargetFolder>

mono Oxidizer.exe --escape-keywords-only <SourceFile>.pas <TargetFile>.pas
mono Oxidizer.exe --escape-keywords-only <SourceFolder> <TargetFolder>

You can specify the same path as input and output, in which case Keyword Escaper will update your files in place. Do note that this will be irreversible,
so be sure to have your files backed up or under version control before doing so.

Again do note that running Keyword Escaper on files thatalready use Oxygene syntax (which it cannot detect, because - how?) will be a very bad
idea!

Delphi Compatibility Settings

Aside from the vast amount of new features that Oxygene brings to Object Pascal, it also provides some to make the language more consistent and a
better citizen on the (semi-)managed platforms.

We believe that these changes, as small and as trivial as some of them seem to be, are an important factor of what makes the Oxygene language
clean and consistent, and we encourage developers to embrace them, rather than resists change and disable them — but we also realize that there is
a need for developers to share some code between Oxygene and Delphi and maintain it for both compilers.

And so we have provided a compiler option to enable enhanced Delphi compatibility — at the expense of making the language a bit more cluttered
and inconsistent when this option is enabled.

There are two ways to enable this mode:

1. Delphi language compatibility can be enabled on a file-by-file basis (or even for a sub-portion of a file) using the&DELPHICOMPATIBILITY Compiler
Directive. Possible values are ON, OFF and DEFAULT, with the latter reverting to the project-wide setting.
2. It can also be enabled for the entire project in the Compatibility section oProject Settings.

Effects of the Delphi Language Compatibility Option

Turning on Delphi language compatibility effects the following changes in the Oxygene compiler:

Allow the following Delphi modifier keywords: stdcall, cdecl, pascal
Ignore the following Delphi modifier keywords: reference to, register, safecall library, overload, platform.
Ignore compiler Delphi directives that have no meaning/use in Oxygene
Allow the use of the = operator instead of := in parameter defaults, variable initialization and attributes.
Allow Delphi-style GUIDs in interface declaration on.NET and Island to add the[Guid] attribute..
Allow otherwise instead of else for case Statements.
Allow the dynamic keyword and treat it as identical tovirtual.
Allow the deprecated keyword, with messages, and map it to the appropriate[Obsolete] attribute.
Uses Delphi-style visibility levels for type members:
o private really means unit (i.e. visible in the entire file)
o protected really means unit or protected (i.e. visible to ancestors and in the entire file)
o strict private means truly private
o strict protected means truly protected
Allow initialization and finalization sections (on some platforms)
Allow class helper for and record helper for syntax to declare Extensions
Allow resourcestring to declare (regular) string constants
Allow Delphi's syntax for generic constraints
Allow indexed properties
Allow using a function's name to assign the function'sresult
Allow Nested Types to be declared inside the parent type viatype, instead of Oxygenes nested in syntax.
Allow DEFINED() and DECLARED() in $IF sections, and allow them to be closed by$IFEND.

e © o 0o 0o 0 o o o

e o o o 0o o o o

and

.

Enable the four options discussed in the next section.

Other Relevant Project Options

In addition to the "big" Delphi Language Compatibility switch, there are four more compatibility options (available on the same Project properties tab)
that might be relevant to Delphi developers:

o Allow legacy with — Restores Delphi's unsafewith syntax that does not require an explicit variable declaration, like Oxygene's keyword does.
We highly discourage enabling this option, and recommend revising the Delphi code in question instead, if you must share code between Delphi
and Oxygene.

e Allow implicit var/out in method calls — Allows the passing of by-reference parameters without prefixing them with thevar or out keyword.

o Allow legacy 'Create' constructors — Allows the use of theCreate name both for declaring and calling Constructors and instantiating new
objects. By default, Oxygene uses nameless constructors (and, on Cocoa, optionally constructors with Cocoa'swith* naming convention).

o Allow legacy unscoped enums — Allows enums declared in the current project to be accessed globally, without needing to be prefixed with
the enum's type name. Note that this option affects declared enums, not their use. Enums from referenced libraries will still need to be scoped,
unless the library was build with this option on, and enums declared in a library with the option on will show as globals in all projects that
reference the library, regardless of whether the option is turned on in the referencign project.

« Use Delphi-compatible division operators — Changes the div and/ operators to behave as they do on Delphi, withdiv always producing an
integer result, and / always producing a float result, regardless of input.

See Project Settings Reference: Delphi Compatibility Build Settings Turning on Delphi Language Compatibility option discussed above will implicitly
enable these four option as well.

See Also

e Minor Language Differences compared to Delphi
e Delphi Compatibility Build Settings in the Project Settings Reference

Delphi RTL

The Delphi RTL is a Delphi-compatible RTL and non-visual VCL implementation for the Elements compiler (and more specifically, the Oxygene
language).

The goal of this project is to reproduce a reasonable subset of standard Delphi APIs used by a large percentage of Delphi code bases, in order to
facilitate and ease the porting of such code bases to Oxygene to re-use business logic in .NET, Cocoa, Java/Android or Island applications.

The goal is most decidedly not to get existing Delphi projects or applications to just recompile out of the box. The differences between the platforms
are too significant, and there is only so much abstraction a library such as this can provide; some changes to existing code will continue to be required
for it to build in Oxygene, and some paradigms need to be rethought to fit in well with the platforms.

Among other things, Delphi RTL provides:

* An TObject alias type and extensions that provides Delphi-Compatibility for that class, including the ability to callFree (even though the calls will
be ignored as Oxygene relies on GC or ARC to actually free objects.

o Areplacement String type that behaves like Delphi's string, with seamless bridging semantics to the platform's native Strings.
e Clean implementations of many (but far from all) common methods and classes from Delphi's RTL, such asSysUtils and the like.
Read more about Delphi RTL in the API section.

Note: Delphi RTL is not to be confused with using Island/Delphi support to import a Delphi SDK for use with Elements, which gives you access to the
actual RTL and VCL classes from Delphi (at the cost of being tied to native code, and requiring a Delphi license).

Using Delphi Packages

Using the Island/Delphi pseudo-platform, new in Elements 12, your Elements projects can use the Delphi type system take advantage of all the
existing Delphi class libraries, including the RTL (Sysutils & Co), VCL, FireMonkey, dbGo and more.

Delphi SDK support is available forlsland-based projects on native Windows, Linux and macOS.

You can read more about this feature, here.

See Also

e Delphi Object Model
o Delphi pseudo-platform

Namespaces and References

One of the conceptual differences between Delphi and Oxygene is the handling oReferences and Namespaces in Oxygene.

In Delphi, every source module (except the main program) starts with the keyword and a unique name (Delphi's recent addition of half-baked
namespaces confuses this matter a bit, but let's leave that aside for now). That unique name must match the filename on disk, and it becomes the
name that this unit will later be "used" as.

Elsewhere in the project (or in other projects making use of the unit), the name of the unit must be specified in the clause for types and other items
defined in the unit to be accessible. In order to be able to "use" a unit, its source file (or a precompiled compiler-version-specific .dcu file of the same
name) must either be listed as part of the project, or be found in one of several Search Path settings.

For example, you might create a file called Helpers.pas, and start it with the lineunit Helpers. In other files of your project, you will includeuses ..., Helpers,
...;, in order to make the items declared in that unit available to the following code.

As a Delphi developer, all of the above is obvious and second nature to you, but reiterating it will help to put in perspective how similar things are
achieved in Oxygene.

References

Unlike Delphi, an Oxygene project does not commonly directly include or import external source files, such as code from shared libraries, third party
libraries or even the core platform/OS classes. Instead, external types and other entities are obtained via References to other libraries. These can
either be pre-compiled binary libraries (.dll files on .NET, .jar files onJava and .fx and .a Files onCocoa, or references to other projects that are opened
as part of the same Solution (a Solution is comparable to a Project Group in Delphi parlance) that compiles to such a library.

Simply by virtue of being referenced, any (public) types and global entities exposed by the library are automatically available to all code in the project

that references the library.

For example, let's assume we have a library calledHelpers which contains several types, named Foo, Bar and so on. If we create a new project and add a
Reference to Helpers.dll (or Helpers.jar or Helpers.fx, depending on the platform), our code can make immediate use of these types, simply by
referring to them via their (full) name. For instance, it could new up a copy of the Foo class, simply by writing Foo().

Once the reference is made, the code in the project doesn't need to worry what library (let alone what source file) the types it needs have been
declared in. There is no need for a clause simply to access the types, or to cause the library to be linked against.

However, uses clauses still have their - pardon the pun - use, as we will see in the next section.

Namespaces

In Oxygene, types can be contained in namespaces, and while it is possible to declare a type to be namespace-less, that is very rarely (if ever) done,
so for all intents and purposes, one could say that just about all types are part of a namespace.

In Delphi, every source file starts with theunit keyword, in Oxygene every source file starts with namespace, instead (the unit keyword is also supported
in Delphi Compatibility Mode, but it will behave identical tonamespace.

Just like unit, namespace is also (optionally) followed by a name. That name is what will be considered thedefault namespace for the file. The default
namespace influences two aspects of the code inside the file:

« By default, all types declared in the file will become part of this namespace.
o All types from this namespace — no matter where they are defined — will be "in scope" for the file.

What does this mean, exactly? Let's have a closer look.
By default, all types declared in the file will become part of this namespace. This means that if we define a type as follows:

namespace MyCompany.MyProject

type
MyClass = class

end;
then the MyClass class will automatically be considered part of theMyCompany.MyProject namespace. Its so-called fully qualified name will be
MyCompany.MyProject.MyClass. And this full name is how the class can be referred to everywhere.

All types from this namespace will be "in scope" for the file. This means that if we add a second (or more) file to our project and also begin it
with namespace MyCompany.MyProject, this file will be part of the same namespace, and all types from that namespace will be in scope. As such, we can
refer to the above class simply as MyClass — because it is in the same namespace.

The nice thing is that you can add as many files to your project as you need and theyan all share the same namespace. This way, you never have to
worry about adding items to the uses clause just to access classes from within your own project. All your types are automatically in scope in all source
files (of the same namespace).

Of course, while it is common for small to medium projects to just use a single namespace, you are also free to declare different namespaces across
your project in order to better partition parts of your project — for example you could have a MyCompany.MyProject namespace for the bulk of your
project, but a MyCompany.MyProject.MySubSystem namespace for a certain sub-system of the project.

Regardless of namespace, all types declared in a project will be available all throughout the project (unless they are marked founnit level visibility
only) by their full name, and all types marked as public will also be available outside of the project (i.e. when you are creating a library that will be
referenced from other projects).

Namespaces and References

The key point to remember is that namespaces work totally independent of references, as discussed above. Namespaces are logical groupings of
types into a common, well, name space, and they work across references. You could have several libraries that all contain classes belonging to the
same namespace. Conversely, you could have a single library reference that contains classes spread across several namespaces.

It is also perfectly fine for your own main project to declare types that are part of a namespace that is also used by referenced libraries (although you
should take care to only define types in namespaces you control, not in System namespaces such as System.* on .NET orsystem.*, java.* and android.* on
Java).

uses Clauses

We learned above that any type available to a project (whether from inside the project or via references) will be accessible anywhere via its fully
qualified name. So, for example, simply by referencing System.Xml.Ling.dll (on .NET), you can access the XDocument via its full name:

namespace MyCompany.MyProject

begin
var x := new System.Xml.Ling.XDocument(...);

(Note that in this example, the name of the .dIl and the namespace of thexbocument class are identical. This is common practice, but does not really
indicate a direct link between the two. A library can have any name, and contain any namespaces.)

However, it can become tedious to always have to refer to classes by their fully qualified name, and that is where clauses come into play.

Syntactically similar to Delphi, in Oxygene theuses clause can (optionally) be present in both theinterface and implementation section of a source file, and
it can provide a comma-separated list of namespaces that will be considered in scope for the remainder of the file.

For example, if a lot of places in the code above were to refer to types fromSystem.Xml.Ling, the code could be simplified like this:

namespace MyCompany.MyProject

uses
System.Xml.Ling;

begin
var x := new XDocument(...);

and now XDocument can be accessed directly and without its full name.
Some Special Considerations for uses Clauses

« In addition to listing individual namespaces, theuses clause also allows the asterisk character as a wildcard to include a namespace and all its
sub-namespaces. For example, uses System.Xml.* would add System.Xml.Ling to the scope, but alsoSystem.Xml and any other sub-namespace.
e Certain System namespaces will be in scope by default and do not manually need to be listed in the uses clause for their types to be accessible
by their short name.
o The RemObjects.Elements.System namespace contains compiler-intrinsic types, such as Integer, System Functions and other elements, and is
always in scope.
o On .NET, the System namespace contains many core classes, such asString and Object, and is always in scope.
On Java, the system and java.lang namespaces contain many core classes, such asString and Object, and are always in scope.
o On Cocoa, the rtl.* namespace contains the C runtime library, core types and many core C-based APIs and is always in scope.

WinForms and WPF

If you are familiar with Ul development in Delphi using the VCL or FireMonkey, then making the switch to WinForms or WPF will feel natural to you, as
both Ul systems behave - with minor differences we will look at in this topic - very similar to the Delphi VCL.

o

In fact, one could argue that WinForms, created by Delphi inventor Anders Hejlsberg, is a logical evolution of the VCL. And FireMonkey is basically
Embarcadero's attempt to replicate the more modern WPF system back to Delphi.

WinForms and WPF

WinForms and WPF are two different ways for creating Windows Ul applications using the .NET platform. They are interchangeable, and it will be
largely a matter of taste and preference which option you pick.

WinForms is a bit older, having been introduced with the original .NET 1.0 in the early 2000s. It is still well supported and widely used, although
many people consider it deprecated and replaced by WPF.

WPF is a more modern take at Ul design that provides many benefits over WinForms, including performance (WinForms uses GDI+, which does not
use graphic acceleration, while WPF is built on top of DirectX), more flexibility in Ul design, and cleaner separation between code and Ul.

WPF uses XAML, a technology shared with Xamarin/MAUI and the deprecated WinRT and Silverlight platyforms - so if you are planning to also develop
"modern" WinRT apps or web apps with Silverlight, WPF is a more natural choice than WinForms.

Oxygene fully supports both WinForms and WPF.

WinForms and WPF from a Delphi Developer's Perspective

Before we dive into how WinForms and WPF work in detail, let's look at Delphi's VCL for comparison.

In Delphi, you develop user interfaces by opening a window (usually referred to as a Form in VCL parlance) in a visual designer. The window will be a
descendant class that you create off of the VCL TForm class, and it will be represented by two files: a source file that contains your code and the class
definition, and a .dfm file that contains a binary or text representation of the window's design, with information on the different control's positions and
attributes.

When you drop components onto the form, an entry gets added for them in thedfm file, and a field gets added to your form class in a specialpublished
visibility section. At runtime, these properties get hooked up magically, as the form data gets loaded from the .dfm. Any property values you configure
on controls (or on the form itself) get stored in the .dfm as well, and loaded from it on startup. Finally, you can create event handlers by double-clicking
controls, or by picking more explicit event types from Delphi's Object Inspector, and when you do, stub methods get generated in your form class,
ready for you to fill, along with an entry in the .dfm that connects the method to the control's event.

You are probably familiar with all of this in depth already, but it's worth spelling out the details for comparison.

Both WinForms and WPF behave pretty similarly concerning the design experience. You get a visual design surface where you can drop
components and configure them. And you can double-click to connect events, and will get stub methods created for you.

Under the hood, however, things work a bit differently in both Ul frameworks, and it's important to understand and be aware of those differences.

Just like the VCL, WinForms and WPF represent your form by creating a subclass of a base form class System.Windows.Forms.Form for WinForms, and
System.Windows.Window for WPF. In this class, you add your own code to implement the form's logic and to react to events.

Similar to the .dfm file in Delphi, WinForms and WPF also use a secondary file to store the core form contents and design.
WinForms

In WinForms, all design information is stored in code that gets parsed when the form is loaded into the designer, and updated/adjusted as you make
changes. If your main form class is in MyForm.pas, you will see a second MyForm.Designer.pas file in your project, which Visual Studio will nest underneath
it.

These two files form a single class, using an Oxygene language feature calledPartial Classes, and the idea is that you write your own code in the main
file, while the designer updates the .Designer.pas file as needed. Of course you can also update the designer file if you want, but you need to be careful
which changes you make, as to not break the designer.

Inside the .Designer.pas file you will find a declaration for your class (marked with thepartial keyword to indicate that it is merely half of a partial class).
The class will have fields for any components you have dropped, and a method called InitializeComponent that the designer fills with actual code that
instantiates the controls and populates all the properties you have set. When you make change to the designer, you can actually see the code in
InitializeComponent change to reflect the new values.

When you create event handlers (by double-clicking a control or using the Event tab in the Properties Pane, which works analogous to the event view in
Delphi's Object Inspector, the designer will add the stub method to your main code file, and also add a line to InitializeComponent to hookup the event
handler to the right control.

All in all this is pretty similar to how things work with the VCL - and in most cases you can just ignore that theDesigner.pas file contains actual Oxygene
code, and just think of it as being comparable to the .dfm file in your Delphi app.

WPF

WPF takes a slightly different approach. Like in WinForms, you have a code file where your descendant of the basavindow class is defined. But instead
of a second source file, the design of your form is stored in a so-called XAML file - essentially an XML file with the.xaml extension.

XAML files are such an important part of the WPF development experience that Visual Studio actually reverses the nesting: you will seeMyForm.xaml as
top-level file in your project, with MyForm.pas being nested underneath it - a reversal from how WinForms files are shown.

As you make changes to your form in the designer, you are essentially directly manipulating the XML in thexaml file. Dropping new controls adds
additional XML elements to the file; changing properties adds or updates attributes in those tags.

In addition to using the visual designer, the XAML was designed to also make it convenient and easy to directly edit the XML in the code editor. This
practice is so common that the XAML designer will by default show as a split view, with the Ul on top and the XAML source at the bottom. You can edit
either, and the other will adjust.

Different than WinForms (or the VCL), editing your WPF form willnot make any changes to your code, aside from inserting event handler stubs when
you create them, of course. All other changes are constrained to the .xaml file only. This makes for a nice and clean separation between Ul and code,
and in fact it is common in larger teams to pass .xaml files on to the Ul designers who won't touch or even use the code.

You will notice that not even fields are generated in your code for the components you drop. How then can you interact with the items on your form
from code?

Simple: In practice, you can think of the.xaml file as being part of your code base, and any items that show up in the.xaml file, if they have been
assigned a Name, are automatically available as properties in your form class, just as if they had been declared in code. If you have a button like this in
the .xaml:

<Button x:Name="MyButton" ... />
you can simply access it directly from code as
MyButton.Text := 'Click me!";

How does this work under the hood? As you compile your project (and also inside the IDE, for purposes of code completion and IntelliSense), eaclxami
file gets processed into source code, creating half of a partial class that extends your own code (very similar to WinForms). This part defines properties
for all the named controls in your form.

During normal development, this is not something you often have to think about or concern yourself with, but you may sometimes see this auto-
generated file referred to, for example in error messages. It will have the same name as your class, but a .g.pas extension (with g standing for
"generated") and it will be located in the /obj/ folder of your project. You should never touch or modify these files, as any changes you make to them
will be lost when the file is regenerated.

In Practice

So you see, in practice, working with WinForms and WPF is much like what you are already familiar with from Delphi's VCL. You implement your
window in a custom class derived from a root form class provided by the system. You get a visual designer where you can drop components, adjust
their properties and create the look of your form in a WYSIWYG fashion. And you can create event stubs to react to user events from the controls, the
same way you would in Delphi.

Your form's data and layout is stored in a second file (Designer.pas or .xaml) that you can treat pretty much as a black box, butcan also interact with
and tweak manually, if so desired.

Read More

You can find out more about WinForms and WPF at these external resources:

e WinForms on MSDN
e Windows Presentation Foundation on MSDN

On using WinRT to create "modern" Windows apps instead:

o Delphi to Oxygene: Modern Windows Ul Development with WinRT Ul
e developer.windows.com

Other platforms:

o Delphi to Oxygene: iOS Ul Development with Cocoa Touch
o Delphi to Oxygene: Mac Ul Development with Cocoa
e Delphi to Oxygene: Android Ul Development

RemObjects C#

As you would expect from the name, the RemObjects C# language is basically pretty much exactly the C# language you may
already know and love from your work with Microsoft's Visual C# on .NET or with Xamarin and Mono.

Different from our own Oxygene language, where we add new and exciting language features frequently, our aim with the RemObjects C# compiler
front-end is to stay as close and true to the C# language as possible, and to adhere to the official C# standard as described in the EMCA specification
and as implemented in the de-facto standard C# compilers.

The RemObjects C# compiler will evolve as the official C# language evolves, but our goal is not to drive the C# language forward (and diverge from
the standard) ourselves, but rather to provide a compiler and language for .NET, Cocoa and Java that will feel like "true C#" to everyone familiar with
the language.

That said, RemObjects C# does adds afew features to the standard C# language to make it fit better on all the platforms it supports. These are
covered under Language Extensions.

Learn More

Learn C# (External Links to C# Tutorials not specific to RemObjects C#)
Language Extensions in RemObjects C#

Work with RemObjects C# in Fire or Wateron Mac and Windows

Work with RemObjects C# in Visual Studio on Windows

The Platforms — .NET, Cocoa, Android, Java, Windows, Linux and WebAssembly
Elements RTL — An optional cross-platform base library

e o o o o o

e EUnit — a cross-platform unit testing framework

Getting Started

o Get set up with Fire on Mac
e Get set up with Wateron Windows
e Get set up with Visual Studio on Windows

Support

e C# Discussion Forum on Talk

Learning C#

Just about any decent book, tutorial or course out there will provide you with the information you need to learn C#, and all you learn about the
language will apply directly to using RemObjects C#.

e Visual C# Resources, Microsoft
e Introduction to Programming C#, Georgia State University, iTunes U
e C# Programming Guide, Microsoft
e C# Fundamentals: Development for Absolute Beginners, Microsoft Virtual Academy
o C# Programming, Liberty University Online, iTunes U
e C# 5.0in a Nutshell: The Definitive Reference, Joseph Albahari & Ben Albahari. Amazon
e C# 5.0 Unleashed by Bart De Smet. Amazon
e C# 5.0 (4th Edition) by Mark Michaelis, Eric Lippert. Amazon
e learncs.org
See Also

e Standard ECMA-334 — C# Language Specification

Language Extensions

RemObjects C# adds a few features to the standard C# language to make it fit better on all the platforms it supports. We try to keep these extensions
to a minimum, and tasteful within the design aesthetics of the C# language.

Where additional keywords are needed, we follow the C/C++/C# convention of prefixing these with two underscores (" ") to avoid conflict with future
changes to the C# spec.

Multi-Part Method and Constructor Names

In order to fit in well with the API conventions on theCocoa platform, RemObjects C# adds support for multi-part method names — essentially the
ability for a method's name to be split into separate parts, each followed by a distinct parameter. This feature is available on all platforms, and
described in more detail in the Multi-part method names topic.

Not-nullable Types
Similar to the "nullable types" feature in standard C#, reference type variables can be adorned byf the operator to mark them as "not nullable". See

the Nullability topic in the Language Concepts section for more details, andNon-Nullable Types for a more explicit discussion of the C# syntax (which
mirrors nullable types in our Java dialect, lodine).

Inline Methods

Functions can be marked with the _inline keyword to cause them to be inlined at the call site instead of being generated as separate functions in the
executable. See the Inline Functions topic for more details.

Labeled Loop Statements

Labeled Loop Statements allow you more control when writing nested loops, including the ability tobreak or continue an outer loop from inside a nested
one.

Trailing Closures

Similar to Swift, RemObjects C# supports using aTrailing Closures syntax when calling methods who's last parameter is a closure. This can make for
code that looks cleaner and more easy to read than embedding the closure as last parameter within the parentheses.

Await for Closure Callbacks
The await keyword works not only with "async/await"-style APIs but also with methods that expect a trailing callback parameter.

Cocoa-Specific Features

RemObjects C# adds the _ strong, _ weak and __unretained type modifiers to control how the lifetime ofAutomatic Reference Counted objects is handled
on Cocoa. The modifiers are described in theStorage Modifiers topic. The using __autoreleasepool can be used to manually control ARC auto-release pools.

selector() can be used to create a selector instance on Cocoa, for use in functions that take such a selector for callback purposes, and for dynamic
dispatch of method calls in the Objective-C runtime environment. This is described here.

Mapped Types

RemObjects C# also has full support for a feature calledMapped Types, which are inlined types useful to create cross-platform wrappers with zero
overhead. While you won't often implement your own mapped types, you will likely use existing ones, for example from the Elements RTL library.

Extension Types
Extensions Types can be used to expand an existing type with new methods or properties.

Inheritance for Structs

In RemObjects C#, structs can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike classes,
structs are not polymorphic, and members cannot be virtual or overriden.

Aspects

Aspects are special attributes that influence how the compiler emits the final executable. In RemObjects C#, they use attributes syntax and the
optional _ aspect: attribute prefix. Aspects are covered in more detail intheir own section, including how to use them and how to create your own.

Class Contracts
Class Contracts allow code to become self-testing, with Pre- and Post-Conditions for methods and type-wide Invariants.
Smaller Changes

Global Members

Mostly to fit in better with Cocoal and Island, but available on all platforms, RemObjects C# allows you to both call and define global methods
(functions) and variables that are not contained within a class.

Public/Non-Local Type Aliases

Standard C# allows the declaration of local type aliases with the syntaxusing keyword, but these aliases are confined to be visible in the current file
only. RemObjects C# allows the annotation of this syntax with the public keyword to define global/public aliases that will be visible anyehwere the
containing namespace is in scope.

public using Menu = Foundation.NSMenu;

Multi-Part Method Names

In order to fit in well with the API conventions on the Cocoa platform, C# method syntax has been expanded with support for what we call multi-part
method names.

Multi-part method names are essentially the ability for a method's name to be split into separate parts, each followed by a distinct parameter. This is
"required" on the Cocoa platform, because all the platform's APIs follow this convention, and we wanted RemObjects C# to be able to both consume
and implement methods alongside those conventions without resorting to awkward attributes or other adornments, and to feel at home on the Cocoa
platform.

For cross-platform completeness, multi-part method names are now supported on all platforms, and are also compatible with Oxygene and Swift.
A multi-part method has parameter parts for each part, both when being declared:

bool application(UlApplication application) didFinishLaunchingWithOptions(NSDictionary launchOptions) { ... }

and when being called:

myClass.application(myapp) didFinishLaunchingWithOptions(options);

Implementing Multi-Part Constructors

RemObjects C# has always had the ability to call named and multi-part-named constructors defined externally, both from Cocoa APIs and on classes
defined in Oxygene or Silver. With version 8.2, named constructors can now be declared and implemented in C# as well. To avoid ambiguity, the
syntax for this deviates sightly from C#'s regular syntax for nameless constructors (which use the class's name), and uses the this keyword instead.

For example:

public class Foo

{
public Foo(string name) // regular nameless C# constructor
{
}

public this(string name) // same as above
{
}

public this withName(string name) // regular named C# constructor
)
public this withName(string name) andValue(object value) // multi-part C# constructor
)
}
These can be of course called as follows:
new Foo("Hello");

new Foo withName("Hello");
new Foo withName("Hello") andValue(42);

Version Notes

e The ability to define custom multi-part constructors is new in Version 8.2.

See Also

e Multi-Part Method Names

Non-Nullable Types

Similar to how value types can be made nullable in standard C# by suffixing the typename with a question mark?), RemObjects C# allows reference
types - which are nullable by default - to be marked as not nullable by suffixing the type name with an exclamation point).

This can make for more robust code, as variables, fields, properties or parameters declared as such can be relied on to not bewll. In many cases, the
compiler can even emit compile-time warnings or errors, for example when passing a literal null to a non-nullable parameter.

For consistency, the ! operator is alos allowed on value types, where it will be ignored, simliar to how the is allowed on referene types (are nullable by
default) and is ignored there.

Int32 i1; // non-nullable by default, 0

Button bl; // nullable by default, null

Int32!i1; // non-nullable by default, 0, same as above
Button? bl; // nullable by default, null, same as above
Int327 i2; /I nullable, null

Button! b2 = new Button(); // not nullable, thus needs initialization

Please also refer to the Nullability topic in the Language Concepts section for more detailed coverage.

See Also

Nullability

Non-Nullable Types in Oxygene
Non-Nullable Types in Java
Non-Nullable Types in Mercury
Value Types vs Referene Types

Inline Methods

Functions can be marked with the _inline keyword to cause them to be inlined at the call site instead of being generated as separate functions in the
executable.

e o o o o

__inline int add(a: Int, b: Int)
{

return a+b

}

Version Notes

e Support for _inline in C# is new inVersion 8.1.

Labeled Loop Statements

If a loop statement such as a for, foreach or while loop is labeled (a syntax normally only used in combination with the dreadedgoto statement),
RemObjects C# allows that name to be used to continue or break out of the loop without regard for nestings.

For example:

List<List<string>> mylLists; // a list of lists
OuterLoop: foreach (List<string> | in myLists)
{

foreach (string s in myLists)

if (s == "stop")
break OuterLoop;
}
}

See Also

e Support forlabeled loop statements and break and continue in Oxygene.

Version Notes

o Labeled loop statements are new inVersion 8.2.

Trailing Closures

Similar to Swift, RemObjects C# supports using aTrailing Closures syntax when calling methods whose last parameter is a closure. This can make for
code that looks cleaner and more easy to read than embedding the closure as last parameter within the parentheses.

The following snippet shows a call todispatch_async with a trailing closure:
dispatch_async(dispatch_get_main_queue) {

// do work
}

Compared to the classic call with the closure embedded:

dispatch_async(dispatch_get_main_queue, () => {

// do work
b

If the closure receives any parameters, their names will be inferred from the declaration of the method or the delegate type used in the declaration,
and become available as if they were local identifiers:

Limitations

Trailing closures are not supported inside thebase/this call to a deferred constructor, or inside__require/__ensure clauses.

See Also

e Trailing Closures in Swift
e Trailing Closures in Oxygene

Await Expressions

In RemObjects C#, await can also be used with methods that take a "callback" closure as last parameter. The parameters of the closure will turn into
return values of the call. For example, consider the following call using Elements RTL's Http class:

void downloadData()

Http.ExecuteRequestAs|son(HttpRequest(URL), (response) => {
if (response.Content != null)
{
dispatch_async(dispatch_get_main_queue(() => {
data = response.Content;
tableView.reloadData();
i
}
hak
}

This code uses two nested closures, first to wait for the response of the network request, and then to process its results on the main Ul thread. With
await this can be unwrapped nicely:

func downloadData() {
var response = await Http.ExecuteRequestAs|son(HttpRequest(URL)) {
if let content = response.Content
{
await dispatch_async(dispatch_get_main_queue());
data = response.Content;
tableView.reloadData();
}
}

Note how the parameter of the first closure,response becomes a local variable, and how await is used without return value on thedispatch_async call.
For callbacks that return more than one parameter,await will return a tuple, e.g.:

var (value, error) = await TryToGetValueOrReturnError();

See Also

e await Expressions in Oxygene
o _ await keyword in Swift

Storage Modifiers (Cocoa)

On the Cocoa platform, which uses ARC rather than Garbage Collection for memory management, the three storage modifier keywords _ strong, _ weak
and __unretained are available as extensions to the C# language in order to control how object references are stored in local variables, fields or
properties.

By default, all variables and fields are__strong - that means when an object is stored in the variable, its retain count is increased, and when a variable's
value gets overwritten, the retain count of the previously stored object gets reduced by one.

Read more about this topic in the Storage Modifiers topic in the Cocoa platform section.

Cocoa Only

Storage Modifiers are relevant and available on the Cocoa platform only. They can optionally begnored on .NET and Java whenCross-Platform
Compatibility Mode is enabled.

See Also

e Storage Modifiers in the Cocoa platform section
o Storage Modifiers in Oxygene

Auto-Release Pools w/ using (Cocoa)

The standard C# using statement has been extended for the Cocoa platform to allow the__autoreleasepool keyword to be used in lieu of another
expression. This creates a new Auto-Release Pool for this thread and cleans it up at the end of the using statement.

using (__autoreleasepool)

NSApplicationMain(argc, argv);
}

Refer to the Auto-Release Pool topic in the Cocoa platform section for more details.

Cocoa Only

The using __autoreleasepool syntax is relevant and available on the Cocoa platform only.

See Also

o Auto-Release Pool

o Automatic Reference Counting (ARC)
e using statement in Oxygene

Selector Expressions (Cocoa)

The _ selector keyword can be used to get a selector reference on Cocoa, for example to dynamically invoke methods, or pass them to Cocoa APIs that
expect a SEL type.

SEL s = __selector(compare:options:);

Using the selector literal syntax will cause the compiler to check whether the specified selector is valid and known, and a warning will be emitted if a
selector name is provided that does not match any method known to the compiler. This provides extra safety over using the NSSelectorFromString
function.

Cocoa Only

The __selector keyword is relevant and available on the Cocoa platform only.

See Also

e Selectors
o selector() in Oxygene

Mapped Types

Mapped type are a unique feature of the Elements compiler. They let you create compatibility wrappers for types without ending up with classes that
contain the real type. The wrappers will be eliminated by the compiler and rewritten to use the type the mapping maps to.

When working with C#, you will most commonlyuse mapped types (for example as provided by theSugar cross-platform library). Using mapped types
is seamless, and they behave just like regular non-mapped types.

You will not often need toimplement mapped types yourself, but for when you do, RemObjects C# - like Oxygene and Swift pprovides a syntax for
implementing mapped types with the _mapped keyword and the => operator.

Please refer to the Mapped Types topic in the Language Concepts section for more details.

Extension Types

Type extensions can be used to expand an existing type with new methods or properties.

Extensions are most commonly used to add custom helper methods, often specific to a given project or problem set, to a more general type provided
by the framework, or to correct perceived omissions from a basic type's API.

For example, a project might choose to extend thesString type with convenience methods for common string operations that the project needs, but that
are not provided by the actual implementation in the platform.

Extension declarations look like regular Class declarations, except that theclass keyword is prefixed with the _extension keyword. Extensions need to be
given a unique name, and state the type they extend in place of the ancestor. It is common (but not mandatory) to use the original type's name,
appended with the unique suffix.

public __extension class String_Helpers : String

int NumberOfOcurrencesOfCharacter(Char character)

{

=
}

Inside the implementation, the extended type instance can be referred to via thethis keyword, and all its members can be accessed without prefix, as
if the extension method was part of the original type. Note that extensions do not have access to private or otherwise invisible members. Essentially
they underlie the same access controls as any code that is not part of the original type itself.

Extension types can declare both instance and static members. They can add methods and properties with getter/setter statements, but they cannot
add new data storage (such as fields, or properties with an implied field), because the underlying structure of the type being extended is fixed and
cannot be changed.

Extensible Types

Extensions can be defined forany named type, be it a Class, Struct, Interface, Enum, or Block.

No matter which kind of type is being extended, the extension will always use theclass keyword.

See Also

e Extension Types in Oxygene
e Extension Types in Java
o Extension Types in Mercury

Struct Inheritance

In RemObjects C#, structs can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike classes,
structs are not polymorphic, and members cannot be virtual or overriden.

MyStructl = public struct

{
public int a;
public void DoSomething()
{

}
}
MyStruct2 = public struct : MyStructl
{

public string b;

public void DoSomethingElse()

{

.
}

In the example above, MyStruct2 contains all the fields and methods ofMyStructl, as well as those defined for MysStruct2 itself.

See Also

e Structs in the Concepts section
e Records in Oxygene

Aspects

Aspects are special attributes that influence how the compiler emits the final executable. In RemObjects C#, they use regular attributes syntax.
Aspects are covered in more detail in their own section, including how to use them and how to create your own.

See Also

e Aspects

o Writing Aspects
e Predefined Aspects and Attributes

Class Contracts

RemObjects C# has support for Class Contracts, allowing you to provide Pre- and Post-Conditions for methods and type-wide Invariants to create
classes and structs that can test themselves.

Please refer to the Class Contracts topic for more details.

Keywords
e __ensure
e _ invariants
e _old
e _ require
See Also

o Class Contracts topic in Concepts Section
e Invariants and Pre- and Post-Conditions, and the old and implies Operators in Oxygene

Keywords

The following words are treated as keywords in C#, and have special meaning:

RemObjects C# Keywords

RemObjects C# adds the following handful of keywords to support someLanguage Extensions to Microsoft's standard C# implementation.

e _ aspect — referencing Aspects

e _ autoreleasepool — defining Auto-Release Pools for ARC
e _ block — defining Blocks

e _ensure — Class Contracts (Post-Conditions)
e _ extension — declare a type extension

e _inline — declaring inline methods

e _ invariants — Class Contracts (Invariants)
e _mapped — defining Mapped Types

e _ old — Class Contracts (Post-Conditions)
L]

L]

.

L]

L]

L]

L]

_ published — "Published" visibility for class members, when usingDelphi SDKs
_ require — Class Contracts (Pre-Conditions)

_ result — accessing the result of a method

_ selector — declaring selector literals

_ strong — optional Storage Modifier for strong references in ARC (default)
__unretained — Storage Modifier for unsafe/unretained references in ARC

_ weak— Storage Modifier for weak references in ARC

Standard C# Keywords

These standard keywords are defined by the C# language spec (as of version 5.0 of the C# language), and are also all used by RemObjects C#:

e abstract

® © 06 © © 0 0 © 6 0 0 0 0 0 0 0 0 0 0 0 0 0 © 06 06 0 0 0 0 0 0 06 0 0 0 0 0 0 0 06 06 06 0 0 0 0 0 06 0 0 06 0 0 0 0 0 0 0 0 0 0 0 o

add

as
ascending
assembly
async
await
base
bool
break

by

byte
case
catch
char
checked
class
const
continue
decimal
default
delegate
descending
do
double
dynamic
else
enum
equals
event
explicit
extern
false
field

file
finally
fixed
float

for
foreach
from

get

goto
group

if
implicit
in

int
interface
internal
into

is

join

let

lock

long
main
managed
module
namespace
new

null
object
on
operator
orderby
out
override
params
partial
private
protected
public
readonly
ref
remove
return
sbyte
scoped
sealed
select
set

short
sizeof
stackalloc
static
string
struct
switch
this
throw
true

try

typeof

uint

ulong
unchecked
unmanaged
unsafe
ushort
using
value

var

virtual
void
volatile
where
while

© © o6 0o 0o 0 0 0 0 0 0 0 0 o o

yield

Cdecl

.

Fastcall
e Stdcall
e Thiscall

The following four (undocumented) standard C# keywords are not supported. RemObjects C# will recognize them as keywords, but merely emit an
error and not allow their use:

__arglist
_ refvalue

L]

L]

e _ makeref
e _ reftype

Version Notes

e Support for _inline is new in Version 8.1.

C# Evolution

Without promising exact timelines for individual features, our goal is to try and support all new C# language changes introduced by Microsoft for the
closest upcoming release after they have been finalized, often before and sometimes shortly after they have shipped in Visual C#. Of course details
depend on the timelines for both Microsoft's releases and ours.

New features listed without a bug id are pending review of feasibility for RemObjects C# and/or awaiting more official status from Microsoft while the
C# language version they are slated for is still in development...

Where applicable, we support new language features for all platformsand for all .NET target frameworks (while in Visual C#, many new features are
only supported on .NET Core), and we also review if similar featyre is applicable to Oxygene, as well.

C# 14 (as per .NET 10)

Feature status for Microsoft's Visual C# 14 is tracked here

Extension members no action needed?

Null conditional assignment always was supported

nameof supports unbound generic types bugs://E27172

More implicit conversions for Span and ReadOnlySpan bugs://E27173 (if applicable)
Modifiers on simple lambda parametersbugs://E27171

Field backed properties bugs://E27169
Partial events and constructors bugs://E27170

C# 13

Based on this page

e o o o o o o

Semi-auto-properties bugs://E26056

Params Span<T> + Stackalloc any array type bugs://E26058
nameof accessing instance members bugs://E26059
Default in deconstruction bugs://E26055

Roles/Extensions
Interceptors

C# 12

Based on this page

e o o o o o

e Primary Constructors bugs://E26057

e Lambda default parameters done .2817
e Collection Expressions bugs://E26775

e Alias any type no action needed

¢ Inline Arrays bugs://E26777

C# 11

Based on this page

o file-local-types done .2817
o ref-fields bugs://E26040

e Required members (and here) bugs://E26037

DIM for static members bugs://E26041

Numeric IntPtr no action needed

Unsigned Right Shift done .2817

UTF-8 String Literals bugs://E26044

Pattern matching on ReadOnlySpan<char> bugs://E26046
Checked Operators bugs://E26047

auto-default structs no action needed

Newlines in Interpolation done .2817

List Patterns bugs://E26050

Raw String Literals bugs://E26036

Cache delegates for static method group no action needed
nameOf(parameter) done .2817

Relaxing Shift Operator bugs://E26053
Generic Attributes (same as in bugs://E254647)

® o 0o o6 0 0 0 0 0 0 0 0 o o

These features seem to have dissappeared from the official plans, but have been covered for RemObjects C#

e Relax ordering of ref and partial modifiers no action needed
e Top Level statement attribute specifiers done .2817

C# 10

record-structs done .2695

parameterless-struct-constructors always was supported
globalusingdirective done .2695

file-scoped-namespaces done .2683
extended-property-patterns done .2695
improved-interpolated-strings bugs://E25461 (might not implement)
constant_interpolated_strings done .2683
lambda-improvements done .2693
caller-argument-expression done .2683
enhanced-#line-directives done .2695 (Also Oxygene)
generic-attributes done .2695
improved-definite-assignment always was supported
async-method-builders always was supported

9

Records done .2611 (all languages)

top-level-statements done .2625

pattern-matching changes done .2653

init done .2575

target-typed-new done .2571

module-initializers done .2653 (all languages and platforms)
extending-partial-methods done .2633 (when declared in C#, only)
static-anonymous-functions done .2617 (C# and Oxygene)
target-typed-conditional-expressions done .2621 (all languages)
covariant-returns done .2609 (all applicable languages)
extension-getenumerator #85650 (we support GetSequence already)
lambda-discard-parameters done .2609 (all applicable languages)
local-function-attributes done .2621 (all applicable languages)
native-integers done .2623 (all languages already supported IntPtr as true native int)
function-pointers # done .2635 (see also[FunctionPointer])
skip-localsinit done

unconstrained-type-parameter-annotations #85655

C#8

® o o o6 0 0 0 0 0 0 0 o o

0
i

® o 06 06 0 0 0 0 0 0 0 0 0 0 0 o o

e patterns bugs://E25269

o default-interface-methods - was already implemented for all languages in v10.
e async-streams done .2667

e ranges done

¢ enhanced using done

o static-local-functions done, v10

e null-coalescing-assignment done, v10

L]
L]

readonly-instance-members done
nested-stackalloc always was supported

Status for these seems unclear on Microsoft'a side:

e nullable-reference-types-specification #82380
e nullable-reference-types & here #82380

C# 7.3

blittable done .2299

indexing-movable-fixed-fields always was supported
pattern-based-fixed done .2667

ref-local-reassignment done .2299
stackalloc-array-initializers done .2663
auto-prop-field-attrs done .2299
expression-variables-in-initializers always was supported
tuple-equality done .2299

improved-overload-candidates done (we always had that)

C# 7.2

e o o o 0o 0 0 o o

e readonly-ref done .2297
e span-safety done .2695
e non-trailing-named-arguments done .2299

e private-protected done, v10
e conditional-ref done .2299

o |eading-separator done

C#7.1

Elements .2295 and later is fully up to date with C# 7.1.

async-main done, v10 (Oxygene, Swift and Java too)
target-typed-default done, v10

infer-tuple-names done .2299
generics-pattern-match always was supported

L]
3
3
L]

C#7.0

e pattern-matching bugs://E25276

o local-functions done, v10 (Oxygene too)

e out-var done, v10 (Oxygene too)

e throw-expression done, v10 (Oxygene, Swift ands Java too)
L]

.

L]

binary-literals done, 9.0
digit-separators done, 9.0
task-types done .2663

RemObjects lodine (Java Language)

RemObjects lodine extends the Elements family of languages by adding support for the Java Language.

In @ mixture of our goals with our ownOxygene language, and more similar to our C# and Swift implementations, our aim with the lodine compiler
front-end is to stay close and true to the Java language, but taking it to the next level by making it more modern.

With lodine, the Java language can now be used for all Elements platforms, includingNET, Cocoa and Island - as well as of course on the]Java JVM and
Android.

Learn More

Learn Java (External Links to Java Tutorials not specific to lodine)

Language Extensions in lodine

Work with lodine in Fire or Wateron Mac and Windows

Work with lodine in Visual Studio on Windows

The Platforms — .NET, Cocoa, Android, Java, Windows, Linux and WebAssembly
Elements RTL — An optional cross-platform base library

EUnit — A cross-platform unit testing framework

lodine Home Page

Getting Started

e o o o 0 0o o o

e Get set up with Fire on Mac
o Get set up with Wateron Windows
o Get set up with Visual Studio on Windows

Support

e lodine Discussion Forum on Talk

Learning Java

If you are not familiar with Java yet, we recommend checking out some of the many sites, tutorials and books available about the Java language in
general, in addition to our own resources specific to our implementation of Java on this site.

Just about everything you learn about the Java language in general, and just about any decent book, tutorial or course out there will provide you with
the information you need to learn Java, and all you learn about the language will apply directly to using RemObjects lodine.

e go.java by Oracle
e Java 8 Language Docd

Language Extensions

RemObjects lodine adds a few features to the Java language to make it fit better on all the platforms it supports. We try to keep these extensions to a
minimum, and tastefully within the design aesthetics of the Java language.

Where additional keywords are needed, we follow the C-style language convention of prefixing these with two underscores (" ") to avoid conflict with
future changes to the official Java language.

Type Inference

Paralleling its use in the C# language, thevar keyword can be used to replace a concrete type in field and variable declarations, to leverage type
inference:

Foo x = new Foo(); // classic Java
var x = new Foo(); // use Type Inference

Multi-Part Method and Constructor Names

In order to fit in well with the APl conventions on theCocoa platform, lodine (like C# and Oxygene) adds support for multi-part method names —
essentially the ability for a method's name to be split into separate parts, each followed by a distinct parameter. This feature is available on all
platforms, and described in more detail in the Multi-part method names topic.

Not-Nullable Types

In lodine, both value and reference type variables can be adorned by the? operator to mark them as "nullable" and with the! operator to mark them
as "not nullable". See the Nullability topic in the Language Concepts section for more details, andNon-Nullable Types for a more explicit discussion of
the Java syntax (which mirrors nullable types in our C# dialect).

The ! operator can also be used to force a nullable expression to be non-nullable.

int? foo = null;
String! bar = "Hello";

Events & Blocks

Support for .NET-style multi-cast Events is provided to allow Swift code to fully participate in the .NET event system, including support forBlock Types
via the __event and _ block keywords.

Properties

lodine extends the Java language to allow the definition of trueproperties that can be accessed like fields using the. syntax, invoking optional getter
or setter code. In addition, Methods named get* and set* imported from external libraries will automatically be made accessible using property syntax
as well. Defining custom properties uses a syntax similar to C#, but with the __get and _set keywords.

Structs

Using the _ struct keyword, lodine allows the declaration of structs, which are stack-based value types that otherwise behave similar to classes and can
contain fields, properties and methods.

public __struct Point
{

public double x;

public double y;

public double distanceTo(Point other) { ... }
}

Cocoa-Specific Features

lodine adds the _ strong, _ weak and __unretained type modifiers to control how the lifetime ofAutomatic Reference Counted objects is handled on Cocoa.
The modifiers are described in the Storage Modifiers topic. The try (__autoreleasepool) can be used to manually control ARC auto-release pools.

selector() can be used to create a selector instance onCocoa, for use in functions that take such a selector for callback purposes, and for dynamic
dispatch of method calls in the Objective-C runtime environment.

Mapped Types

Mapped Types let you create compatibility wrappers for types without ending up with classes that contain the real type. The wrappers will be
eliminated by the compiler and rewritten to use the type the mapping maps to.

Extension Types

Extensions Types can be used to expand an existing type with new methods or properties.

Partial Classes

Partial Classes allow a single class (or struct) to be declared spanning multiple source files.

Aspects & Attributes

Aspects are special attributes that influence how the compiler emits the final executable. Aspects are covered in more detail in their own section,
including how to use them and how to create your own.

Class Contracts

Class Contracts allow code to become self-testing, with Pre- and Post-Conditions for methods and type-wide Invariants.

Conditional Compilation

lodine allows the use of compiler directives such as#if to compile code conditionally - be it for different platforms, or just different project
configurations.

Smaller Changes

Global Members

Mostly to fit in better with Cocoa and Island, but available on all platforms, lodine allows you to both call and define global methods (functions) and
variables that are not contained within a class.

Array Literals

lodine allows the declaration of Array Literals using curly braces. OnCocoa, they are assignment compatible withNSArray, as well.

int[] myIntArrayl = new int[3];
int[] myIntArray2 = {1,2,3};
int[] myIntArray3 = new int[]{1,2,3};

mylntArrayl = new int[3];
mylIntArray3 = new int[]{1,2,3};
mylntArray2 = {1,2,3};

NSArray arrayl = {1,2,3};
Pointers

lodine supports pointers on Cocoa, Island and on.NET with Unsafe Code enabled, using the same syntax as familiar from C and C#. The* operator can
be used to dereference pointers, and to annotate pointer types; & can be used to obtain the address of objects.

inta=38;

int *anIntPointer;
anintPointer = &a;
*anIntPointer = 5;

Out and By-Reference Parameters

lodine extends Java with support for both in-out and out-only by-reference parameters, using the_ ref and _ out keywords. These work symmetrical to
ref/fout in C# orvar/out in Oxygene, and need to be specified both in the declaration and at the call site:

public void getValues(__out String foo, __ref String bar) { ... }

String f;
String b = "Hello";
getValues(__out f, _ref b);

Swift-style keyword Escaping

Keywords can be used as identifiers if surrounded by back-ticks - same as inSwift:

var 'if' = 5;

Multi-Part Method Names

In order to fit in well with the APl conventions on the Cocoa platform, lodine method syntax has been expanded with support for what we call multi-part
method names.

Multi-part method names are essentially the ability for a method's name to be split into separate parts, each followed by a distinct parameter. This is
"required" on the Cocoa platform, because all the platform's APIs follow this convention, and we wanted Java to be able to both consume and
implement methods alongside those conventions without resorting to awkward attributes or other adornments, and to feel at home on the Cocoa
platform.

For cross-platform completeness, multi-part method names are now supported on all platforms, and are also compatible with Oxygene, C# and Swift.
A multi-part method has parameter parts for each part, both when being declared:

boolean application(UlApplication application) didFinishLaunchingWithOptions(NSDictionary launchOptions) { ... }

and when being called:

myClass.application(myapp) didFinishLaunchingWithOptions(options);

Implementing Multi-Part Constructors

lodine also allows you to call named and multi-part-named constructors defined externally, both from Cocoa APIs and on classes defined in Oxygene or
Silver, and to declare your own. To avoid ambiguity, the syntax for this deviates sightly from Java's regular syntax for nameless constructors (which
use the class's name), and uses the this keyword instead.

For example:
public class Foo

{

public Foo(string name) // regular nameless Javaconstructor
i
public this(string name) // same as above
}
public this withName(string name) // regular named Java constructor
i
public this withName(string name) andValue(object value) // multi-part Java constructor
}
}
These can be of course called as follows:
new Foo("Hello");

new Foo withName("Hello");
new Foo withName("Hello") andValue(42);

See Also

o Multi-Part Method Names

Non-Nullable Types

lodine extends the language with nullability annotations, matching the syntax we also use forC# and Mercury. Reference types - which are nullable by
default - can be marked as not nullable by suffixing the type name with an exclamation point (), and value types can be marked asnullable with a
question mark (?).

This can make for more robust code, as variables, fields, properties or parameters declared as such can be relied on to not bewll. In many cases, the
compiler can even emit compile-time warnings or errors, for example when passing a literal Null or Nothing to a non-nullable parameter.

For consistency, the ! operator is alos allowed on value types, where it will be ignored, simliar to how the is allowed on referene types (are nullable by
default) and is ignored there.

Int32 i1; // non-nullable by default, 0

Button b1l; // nullable by default, null

Int32!i1; // non-nullable by default, 0, same as above
Button? bl; // nullable by default, null, same as above
Int327 i2; // nullable, null

Button! b2 = new Button(); // not nullable, thus needs initialization

Please also refer to the Nullability topic in the Language Concepts section for more detailed coverage.

See Also
o Nullability
e Non-Nullable Types in Oxygene
¢ Non-Nullable Types in C#
e Non-Nullable Types in Mercury
e Value Types vs Referene Types

Events & Blocks

RemObjects lodine extends Java language with support for .NET-styleEvents via the _events keyword.

Events are provided mainly to let Java fit in well on .NET, where the use of them is unavoidable. But although events most commonly used in .NET and
both Cocoa and Java have different paradigms to deal with similar concepts such as Blocks and Delegates, Delegate Protocols (Cocoa) andAnonymous
Interfaces (Java), events are supported in Java on all platforms.

Declaration Syntax

Events are pretty similar to properties in concept, and that reflects in the declaration syntax. An event member is declared similarly with the event
keyword, followed by a name for the event and the event type, which must be a Block type:

__event EventHandler Click;

Like properties with short syntax, the compiler will take care of creating all the infrastructure for the event, including private variables to store
assigned handlers, and add and remove methods.

Assigning Events

Externally, code can subscribe or unsubscribe from receiving notifications for an event by adding or removing handlers. This is done with the special
+= and -= operators, to emphasize that events, by default, are not a 1:1 mapping, but that each event can have an unlimited number of subscribers.

func ReactToClick(aEventArgs: EventArgs) {
}

...

myObject.Click += ReactToClick
/...

myObject.Click -= ReactToClick

The += operator adds the passed method (also called event handler) to the list of subscribers. The-= operator removes the method from the list again,
assuming it was added before. Neither operator looks for duplicates, so if += is used multiple times with the same event handler, that handler will
trigger multiple times when the event fires. Similarly, -= removes the first occurrence of the event handler from the list.

When the event later fires, all the subscribers that have been added will be notified. They will be called one by one, but the order will be
undetermined.

Who can add and remove subscribers to an event is controlled by the visibility of the event (see below).

Calling Events

An event can be called, or fired, by simply calling it like a method. Before doing so, one should ensure that at least one subscriber has been added,
because otherwise firing the event will cause a Null Reference Exception. You can check if an event has one or more subscribers by comparing it to nil
or using the assigned() system function:

if (Click !'= null) {
Click()
}

Only the type that defines the event can fire it, regardless of the visibility of the event itself.
Visibility

Like all members of a type, events can be marked with a visibility modifier, such aspublic, internal, or private. This visibility extends to the ability toadd
and remove subscribers, but not to raise (or fire) the event, which is always private.

Virtuality

Events are virtual, and can be overriden in base classes.

Block (Delegate) Types

Block types (for use in Events and elsewhere) can be defined using the_ block keyword:

_ block int BlockTypename(int i);

Properties

lodine extends the Java language to allow the definition of true properties that can be accessed like fields using the syntax, invoking optional getter
or setter code. In addition, Methods named get* and set* imported from external libraries will automatically be made accessible using property syntax
as well.

Defining custom properties uses a syntax similar to C#, but with the__get and _ set keywords.
String Name {
_get{

return fName;

}
_set{
fName = value;
updateUl();
}
}
int Count { _ get { return fCount; } }
Bool Test { _ get; _ set; }
Properties can be accessed using regular. syntax:

myObject.Name = "Hello";
if (myObject.Test) {

}

Structs

lodine extends the Java language with the ability to declare Structs. Like in C#, Swift, Go and Mercury, andRecords in Oxygene, Structs are comparable
to Classes in that they represent a data structure that combines Fields and Methods. Unlike Classes, Structs are stack-based value types, and while
they do support inheritance, they do not offer polymorphism.

A struct is declared very similar to a class, except by replacing the class keyword with _struct:
MyStruct = public _struct {
public int count;

public void DoSomething() {

}
}

Structs may provide an ancestor viaextends, but they may not declare virtual or overriden members.

Except when using the Toffee compiler back-end for Cocoa, they may also implement interfaces using the sameimplements syntax as used for classes.

MyStruct2 = public _struct extends MyStruct implements IFoo {
public string name;
public void DoSomethingElse() {

}..

}..

In the example above, MyStruct2 contains all the fields and methods ofMyStruct, as well as those defined for MyStruct2 itself.

See Also

e Structs in the Concepts section
e Records in Oxygene

Storage Modifiers (Cocoa)

On the Cocoa platform, which uses ARC rather than Garbage Collection for memory management, the three storage modifier keywords _ strong, _ weak
and __unretained are available as extensions to the Java language in order to control how object references are stored in local variables, fields or
properties.

By default, all variables and fields are__strong - that means when an object is stored in the variable, its retain count is increased, and when a variable's
value gets overwritten, the retain count of the previously stored object gets reduced by one.

Read more about this topic in the Storage Modifiers topic in the Cocoa platform section.

Cocoa Only

Storage Modifiers are relevant and available on the Cocoa platform only. They can optionally begnored on .NET and Java whenCross-Platform
Compatibility Mode is enabled.

See Also

e Storage Modifiers in the Cocoa platform section
e Storage Modifiers in Oxygene

Auto-Release Pools w/ try (Cocoa)

The standard Java try statement has been extended for the Cocoa platform to allow the_ autoreleasepool keyword to be used in lieu of another
expression. This creates a new Auto-Release Pool for this thread and cleans it up at the end of the try statement.

try (__autoreleasepool) {
NSApplicationMain(argc, argv);

Refer to the Auto-Release Pool topic in the Cocoa platform section for more details.

Cocoa Only

The using __autoreleasepool syntax is relevant and available on the Cocoa platform only.

See Also

o Auto-Release Pool

o Automatic Reference Counting (ARC)
e using statement in Oxygene

Selector Expressions (Cocoa)

The _ selector keyword can be used to get a selector reference on Cocoa, for example to dynamically invoke methods, or pass them to Cocoa APIs that
expect a SEL type.

SEL s = __selector(compare:options:);

Using the selector literal syntax will cause the compiler to check whether the specified selector is valid and known, and a warning will be emitted if a
selector name is provided that does not match any method known to the compiler. This provides extra safety over using the NSSelectorFromString
function.

Cocoa Only

The __selector keyword is relevant and available on the Cocoa platform only.

See Also

e Selectors
o selector() in Oxygene

Mapped Types

Mapped types are a unique feature of the Elements compiler. They let you create compatibility wrappers for types without ending up with classes that
contain the real type. The wrappers will be eliminated by the compiler and rewritten to use the type the mapping maps to.

When working with Java, you will most commonlyuse mapped types (for example as provided by theSugar cross-platform library). Using mapped
types is seamless, and they behave just like regular non-mapped types.

You will not often need toimplement mapped types yourself, but for when you do, RemObjects lodine - like Oxygene, C# and Swift provides a syntax
for implementing mapped types when needed, with the _mapped keyword and the => operator.

Please refer to the Mapped Types topic in the Language Concepts section for more details.

Extension Types

Type extensions can be used to expand an existing type with new methods or properties.

Extensions are most commonly used to add custom helper methods, often specific to a given project or problem set, to a more general type provided
by the framework, or to correct perceived omissions from a basic type's API.

For example, a project might choose to extend thesString type with convenience methods for common string operations that the project needs, but that
are not provided by the actual implementation in the platform.

Extension declarations look like regular Class declarations, except that theclass keyword is prefixed with the _extension keyword. Extensions need to be
given a unique name, and state the type they extend in place of the ancestor. It is common (but not mandatory) to use the original type's name,
appended with the unique suffix.

public __extension class String_Helpers extends String {
Int NumberOfOcurrencesOfCharacter(Char character) {

-
}

Inside the implementation, the extended type instance can be referred to viathis keyword, and all its members can be accessed without prefix, as if
the extension method was part of the original type. Note that extensions do not have access to private or otherwise invisible members. Essentially they
underlie then same access controls as any code that is not part of the original type itself.

Extension types can declare both instances and static members. They can add methods and properties with getter/setter statements, but they cannot
add new data storage (such as fields, or properties with an implied field), because the underlying structure of the type being extended is fixed and
cannot be changed.

Extensible Types

Extensions can be defined forany named type, be it a Class, Struct, Interface, Enum, or Block.

No matter which kind of type is being extended, the extension will always use theclass keyword.

See Also

o Extension Types in Oxygene
e Extension Types in C#
e Extension Types in Mercury

Partial Classes

Partial Classes allow a single class (or struct) to be declared spanning multiple source files by having each part amended with the_partial keyword. All
parts must be declared with the same visibility level. All parts must either declare the exact same set of ancestors, or only one part may declare any
ancestors at all.

public __partial class Window1 extends System.Windows.Window

public String reverse() { ... }
}

Aspects

Aspects are special attributes that influence how the compiler emits the final executable. In RemObjects lodine, they use regular attributes syntax.
Aspects are covered in more detail in their own section, including how to use them and how to create your own.

See Also

e Aspects
e Writing Aspects
e Predefined Aspects and Attributes

Class Contracts

RemObjects lodine has support for Class Contracts, allowing you to provide Pre- and Post-Conditions for methods and type-wide Invariants to create
classes and structs that can test themselves.

Please refer to the Class Contracts topic for more details.

Keywords
e _ ensure
e _ invariants
e _old
* _ require
See Also

e Class Contracts topic in Concepts Section
e Invariants and Pre- and Post-Conditions, and the old and implies Operators in Oxygene

Conditional Compilation

lodine supports the same directives as C# forConditional Compilation.

Code blocks, whole members or entire types can be enclosed using#if and #endif directives in order to compile them only when the specified condition
applies.

void main() {
soSomething()
#if DEBUG
doSomethingOnlylnDebugMode();
#endif
doSomethingElse();

}

See Also

e Conditional Compilation
e defined() System Function

Keywords

The following words are treated as keywords in Java, and have special meaning:

lodine Keywords

lodine adds the following handful of keywords to support someLanguage Extensions to Oracle's standard Java implementation.

__add — Events

__aspect — Aspect Scope Prefix

__assembly — Aspect Scope Prefix

__autoreleasepool — Auto-Release Pools for Cocoa

_ block — Blocks

__ensure — Class Contracts (Post-Conditions)

_ event — Events

__extension — Extension Types

__get — Properties

_invariants — Class Contracts (Invariants)

__mapped — Mapped Types

__module — Aspect Scope Prefix

_ old — Class Contracts (Post-Conditions)

_out — mark a method parameter as by-reference (out-only)
_ partial — Partial Types

_ published — "Published" visibility for class members, when usingDelphi SDKs

®© o6 o o 06 06 06 0 0 0 0 0 0 0 o o

_ ref — mark a method parameter as by-reference (in/out)
_ remove — Blocks

_ require — Class Contracts (Pre-Conditions)

_ result — accessing the result of a method

_ selector — Selectors for Cocoa

_ set — Properties

_ strong — Storage Modifiers for Cocoa

_ struct — Declaring Structs (value types)

__unretained — Storage Modifiers for Cocoa

__weak — Storage Modifiers for Cocoa

var — used instead of a type name, forType Inference

® o o 0o 0 0 0 0 0 o o

Standard Java Keywords

These standard keywords are defined by the Java language spec and are also all used by lodine:

abstract
assert
boolean
break
byte
case
catch
char
class
const
continue
default
do
double
else
enum
extends
false
final
finally
float

for

goto

if
implements
import
instanceof
int
interface
long
native
new

null
package
private
protected
public
return
short
static
strictfp
super
switch
synchronized
this
throw
throws
transient
true

try

void
volatile
while

®© © 06 6 6 © 0 0 0 0 6 0 0 0 0 0 © 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Java Evolution

Without promising exact timelines for individual features, our goal is to try and support any new Java language changes introduced by Oracle in a
timely fashion after they have been finalized, often before and sometimes shortly after they have shipped in Oracle's Java compiler.

Java 10
(via this)

« Local-Veriable Fyeoetnference— had already been supported since lodine's initial release.

Java 9

(via this and this)

Private Interface Methods — #78481

Allow effectively-final variables in the try-with-resources statement — #78484

Allow diamond with anonymous classes — #78489

Allow @SafeVargs on private instance methods— #78488

Complete the removal of underscore from the set of legal identifier names— #78490

e o o o o

Java 8

(via this link and this one)

Lambda expressions — #78483 (to check syntax compatibility)
Method-References — done

L]

L]

e Type Annotations — #78485

e Default and static interface methods— #78481
L]

Repeating annotations — #78485

Java 7
(also via this one)

Binary-titerats — long done

L]

. — long done

. — Elements always did this
o Type Inference for Generic Instance Creations— #78491
L]

L]

L]

Improved Warnings and Errors When Using Non-Reifiable Formal Parameters— #78492
The try-with-resources Statements — #78484

Catching Multiple Exceptions & and Rethrowing with Improved Type Checking— #78493

RemObjects Mercury (VB)

RemObjects Mercury brings the VB.NET language to the Elements platforms.

With Mercury, you can build your existing VB.NET projects, and leverage your Visual Basic™ language experience to write code for aRlatforms
supported by Elements.

Our goal for is for Mercury to bethe future of the Visual Basic.NET language, as M Microsoft shifts focus to a C#-only future for their tools. With
Mercury, VB developers will be able to continue using the language they know and love, both for existing and new projects.

Unlike Visual Basic.NET, Mercury will continue to evolve, both to keep up with new versions of and technologies on .NET and language/platfrom
capabilities of C#, but also as a language onto itself, with new and innovative features being added all the time, both based on user requests and
feedback, and our internal product roadmap.

What's more, Mercury takes the VB languagebeyond just .NET, letting developers create native projects for all modern operating systems and
platforms, from Android and iOS to Java and CPU-native Windows, Mac and Linux apps.

With Mercury, the future of ther Visual Basic language is bright and strong.

Learn More

Learning Visual Basic and Mercury (External links to tutorials, mostly not specific to Elements)
Converting your existing .vbprojs to Mercury

Language Extensions in Mercury

Work with Mercury in Fire or Wateron Mac and Windows

Work with Mercury in Visual Studio on Windows

The Platforms — .NET, Cocoa, Android, Java, Windows, Linux and WebAssembly

Elements RTL — An optional cross-platform base library

EUnit — A cross-platform unit testing framework

RemObjects Mercury Home Page

Getting Started

e Get set up with Fire on Mac
e Get set up with Wateron Windows
o Get set up with Visual Studio on Windows

e o o o 0o 0 o o o

Support

e Mercury Discussion Forum on Talk

Visual Basic™, Visual Basic.NET™ and others are registered trademarks of Microsoft Corporation.

Basics

Mercury will feel familiar and comfortable right away for developers familiar with Microsoft Visual Basic.NET, as well for existing Elements users who
want to add the Mercury language to their portfolio.

For Veteran Visual Basic.NET Developers

For veteran Visual basic.NET developers, Mercury is the language you already know and love, and everything will work in exactly the same ways you
expect - especially within the .NET platform. While Mercury has some Language Extensions, these are mostly all additive, and you can choose to learn
and adopt them over time.

A slight learning curve will - not unexpectedly - be involved when taking Mercury to theother Platforms. Here, the language is still the same VB you
know, but you will be dealing with new sets of Operating System APis and potentially different paradigms for Ul development and other aspects of
your projects, then what you are used to on .NET.

The optional Elements RTL library provides platform-independent abstractions for many common types and tasks that you might need in your day-to-
day development (and might take for granted on .NET). What's more, it is largely models after simliar types from the .NET Base Library, so it will be
instantly familiar to you.

Adopting it, over platform specific types (such as what the .NET Base Library provides), is a good idea if yu plan to take your code cross-platform, or
even just want to work on a single platform but craving that extra bit of ".NET-like"-ness.

Elements RTL is available in all Mercury projects simply myimporting the RemObjects.Elements.RTL namespace.

For Users Familiar with Other Elements Languages

Users familiar with one or more Elements language also find that Mercury will work pretty much as they would expect. The same concepts such as
References, Namespaces and Classes apply.

Simply adding a new .vb code file tom your project is all youn need to start using Mercury.
Namespaces

One thing worth noting is that Mercury code files do not need an explicit namespace declaration. UnlikeC#, where types defined without a namespace
are, indeed, namespaceless, Mercury works similar to Swift and uses the RootNamespace setting for these types. Unlike Swift, Mercury code filescan
optionally declare a namespace for the types they define and - unlike C# - when they do, this namespace is prefixed by theRootNamespace. You can
prefix the namespace with Global. to avoid that.

As in all Elements languages, you can use a dotted name for types as you declare them, to override this and provide the full namespace for the class.
Modules
Mercury also has the concept ofModules. Modules are like static classes, but all their members are available as globals (i.e. accessible without the

class name), if the Module is in scope. Modules defined in .vb code files will become available toall Elements languages, and you can use the newly
introduced Module Aspect to implement Modules using the other languages, if you so desire.

Learning Visual Basic and Mercury

If you are not familiar with the Visual Basic.NET™ language yet, we recommend checking out some of the many sites, tutorials and books available
about the language in general, in addition to our own resources specific to our implementation of the Mercury VB dialect on this site.

Just about everything you learn about the original Visual Basic.NET language in general, and just about any decent book, tutorial or course out there
will provide you with the information you need to learn VB, and all you learn about the language will apply directly to using Mercury and Elements.

e Visual Basic.NET™ Language Reference
e VB Tutorials

Converting from VB.NET to Mercury

Mercury provides the option to easily convert an existing.vbproj (and also .csproj) for use with Elements.
There are three main ways to trigger a conversion:

« When opening a sin file that contains one or more.vbproj projects in Fire or Water, these projects will show in the project tree, but grayed out as
"unsupported". You can right-click an individual project and choose "Convert to Elements" from the context menu. This will convert the project
in place, create a new .elmemets file, and replace it in the solution. If the solution contains more than onevbproj or .csproj, the context menu will
also provide the option to convert all projects to Elements in one go. This path has the benefit that it can adjustall project references between
the projects to point to the converted .elements projects, as well.

e You can use the "File[Import|Visual C# or Visual Basic.NET Project" menu item in Fire or Water to open and convert a.vbproj directly. This
will automatically create a new .elements file based on the original project file. If a.sin with a matching name already exists in the same folder, it
will be preserved, and a second Silution will be created for the new project.

e You can use the EBuild command line tool with the --convert to convert convert projects from the Terminal/Command Line or from a batch script.
On Mac, you will need to install the External Compiler to use the command line tool.

All three paths lead to the same conversion logic. The.vbproj will be read and analyzed, and a new.elements project will be created based on its
contents. The .vbproj will not be changed.

When converting projects within an open solution, as an added benefit, the IDE will also try to adjust any project referencedrom existing Elements
projects to the project being converted.

The conversion performs a number of steps to try and bring most settings and features over. This includes but might extend beyond:

Removing legacy and unsupported settings.

Adjusting settings that use different names in Elements, such asAllowUnsafeCode, GeneratePDB, VBOptionStrict, etc.
Converting Imports to the DefaultUses setting.

Setting XmiLiteralMode to "Ling to SQL" (see here).

Migrating DEBUG, TRACE, CONFIG= and _MYTYPE= Conditional defines.

Dropping unnecessary .Designer.vb files

e o o o o o

and more.

Please let us know if you encounter any problems converting projects, of have suggestions for more derails that should be carried over.

Project References

When converting projects that are part of a larger solution,Fire and Water will automatically try to adjustProject References as well, with some
limitations:

o If you choose to "Convert all projects to Elements" in one go, the IDe will be avle to adjust all (well-formed) project references to the
converted projects to the new filenames.

e If you convert a single project to Elements, the IDE will adjust project references to it in existingElements projects, but it will not touch any not-
yet-converted .vbproj (or .csproj) projects.

Therefore, the best option for converting a solution with several inter-dependent projects would be to convert all projects in one go.

See Also

e Project References
e Fire and Water
e EBuild command line tool

Language Extensions

RemObjects Mercury adds meny extra features to the Visual Basic™ language, in order to allow better interaction with all supported platforms and
APIs, interact with the other Elements languages, and just in general make Mercury a better language.

Comments

In addition to' and the REM keyword, Mercury also supports// to mark the rest of the current line as comment, and* ... */ to mark a free-form block of
code, potentially spanning multiple lines, as comment.

This change is additive to the Visual Basic™ language and should not cause incompatibility with existing code, where both/ and /* are not valid
constructs.

The /7 and /*..*/ comment styles are supported across all six Elements languages.
Simple Entry Point / Top-Level Statements
Similar to Top-Level Statements introduced in C# 9.0and similar to Swift, Mercury supports a simple syntax for defining theEntry Point for an

executable without explicitly declaring a static class and a static Main method, by simply having a (single).vb file that contains code statements at the
top level.

Mapped Types

Mercurt also has full support for a feature called Mapped Types, which are inlined types useful to create cross-platform wrappers with zero overhead.
While you won't often implement your own mapped types, you will likely use existing ones, for example from the Elements RTL library.

Extension Types

Extensions Types can be used to expand an existing type with new methods or properties.

Class Contracts

Class Contracts allow code to become self-testing, with Pre- and Post-Conditions for methods and type-wide Invariants.

Inheritance for Structs

In Mercury, Structs can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike classes, structs
are not polymorphic, and members cannot be virtual or overriden.

Multi-Part Method Names

In order to fit in well with the APl conventions on theCocoa platform, Mercury adds support for multi-part method names — essentially the ability for a
method's name to be split into separate parts, each followed by a distinct parameter. This feature is available on all platforms, and described in more
detail in the Multi-part method names topic.

Lazy Properties

Lazy Properties are a special kind of property that will be initialized delayed, on first access.

Interface Delegation

Interface Delegation can be used to, well, delegate the implementation of an interface and all it's members to a local property of the class (or
structure).

Shared Classes

Entire classes, not just individual methods, can be marked as *shared". Similar to a Module, a Shared class cannot be instantiated or descended from,
and all its members implicitly become Shared and callable without an instance. However, unlike for modules, they do not become part of the global
scope.

For Loop Improvements
For loops have been extended with two new powerful options:

e For Each Matching will loop a collection, but only execute the code block for items that match a specific type.

e For Each With index will loop a collection and optionally provide a zero-based index of how many iterations of the loop have executed. This can be
helpful, e.g. for pagination or otherwise handling items differently based on their index.

Dynamic
The Dynamic keyword is provided to represent an object of dynamic type. Any known member may be called on eDynamic without compiler checks,

and the call will be dynamically dispatched at runtime, using Reflection or IDynamicObject). In Option Strict Off mode, Object references are treated as
Dynamic to achieve the same behavior as in Microsoft Visual Basic.NET.

Null

In addition to Nothing, which represents the default value or zero-representation of a given type ("unassigned" for reference types, "zero" for value
types), Mercury also introduces the Null keyword, which represents a true null value, even for value types (much likenull in C# ornil in Oxygene).

See Null vs. Nothing for more details.

Null-coalescing Assignment Operator

Matching C# 8.0, the ??= null-coalescing assignment operator assigns the value of its right-hand operand to its left-hand operand, if andonly if the left-
hand operand evaluates to Null. The right-hand expression is only evaluated if needed.

Non-Nullable Types

Similar to the "nullable types" feature in standard Visual Basic, reference type variables can be adorned byf the operator to mark them as "not
nullable". See the Nullability topic in the Language Concepts section for more details, and Non-Nullable Types for a more explicit discussion of the
Mercury syntax (which, given that VB's nullable syntax is that same as C#, was modeled after non-nullable types in RemObjcts C#).

CTryType() Function

The CTryType() keyword/function performs the same functionality as standardCType(), but instead of raising ann expception on failure will return a null
value. The result value of CTryType() will always be aNullable Type.

Pointers

Mercury has full support for Pointers and direct memory access, inUnsafe Code on .NET and on the native Cocoa and Island=backed platforms, via the
Ptr(Of x) syntax.

Records

Mercury includes support for the new Records types introduced by C# 9.0. Records can be declared using the newRecord keyword, are available on all
platforms and compatible with Visual C# and all other Elements languages,.

Public Type Aliases

ByRef Return Values

Matching C# 7.0, reference return values are supported. From the C# documentation: "A reference return value allows a method to return a reference
to a variable, rather than a value, back to a caller. The caller can then choose to treat the returned variable as if it were returned by value or by
reference. The caller can create a new variable that is itself a reference to the returned value, called a ref local."

LINQ Extensions

Mercury as improved LINQ support:
e The LINQ zip extension method is exposed as a proper LINQ Operator:

From x In listl Zip y In list2 Select x + y

Inline Delegate Declarations

When declaring a Sub or Function that accepts a one-off callback type as parameter, Mercury allows the delegate type to be described inline as part of
the method declaration, without the need for a separate named type. The syntax follows the same form as an explcit delegate declaration, e.g.:

Public Sub DoSomeSWork(Callback As Sub(Success As Boolean))

Callback(True)
End Sub

Throw Expressions

Like in C# or Oxygene, Mercury allows expressions to throw an exception:
Dim x := lif(@aSOmeCheck, "All good!", Throw New Exception("Oopsie!"))

Async Main

Also like newer C# or Oxygene, Mercury allows the Main method of a propgram to me marked asAsync.

Cross-Platform Mode

The new #CrossPatform Compiler Directive can be used to toggleCross=Platform Compatibility Mode on or off within a single file. Cross-Platform
Compatibility Mode can also be toggled per project, in Project Settings. It is off by default.

Cocoa-Specific Features

The Using AutoReleasePool combination can be used to manually control ARC auto-release pools.

Top-Level Statements

Similar to Top-Level Statements introduced in C# 9.0and similar to Swift, Mercury supports a simple syntax for defining theEntry Point for an
executable without explicitly declaring a static class and a static Main method, by simply having a (single).vb file that contains code statements at the
top level.

Essentially this simplified code:
Imports System

writeLn("The magic happens here.")
is equivalent to:

Imports System

Module Program
Sub Main(args as String())
writeLn("The magic happens here.")
End Sub
End Module

Access to command line arguments is still available via the implicitly namedargs variable, and the code can choose toReturn either with an integer
result, or without.

Requires Mercury build .2695 or later.

See Also

e Entry Points
o Top-Level Statements 9.0in C#

Mapped Types

Mapped type are a unique feature of the Elements compiler. They let you create compatibility wrappers for types without ending up with classes that
contain the real type. The wrappers will be eliminated by the compiler and rewritten to use the type the mapping maps to.

When working with Mercury, you will most commonlyuse mapped types (for example as provided by theSugar cross-platform library). Using mapped
types is seamless, and they behave just like regular non-mapped types.

You will not often need toimplement mapped types yourself, but for when you do, Mercury - like Oxygene, C#, and Swift -provides a syntax for
implementing mapped types with the MappedTo keyword.

Please refer to the Mapped Types topic in the Language Concepts section for more details.

Extension Types

Type extensions can be used to expand an existing type with new methods or properties.

Extensions are most commonly used to add custom helper methods, often specific to a given project or problem set, to a more general type provided
by the framework, or to correct perceived omissions from a basic type's API.

For example, a project might choose to extend thesString type with convenience methods for common string operations that the project needs, but that
are not provided by the actual implementation in the platform.

Extension declarations look like regular Class declarations, except that theExtends keyword is used (required) in lieu ofinherits, to indicate the type that
is being extended. Extensions need to be given a unique name and state the type they extend in place of the ancestor. It is common (but not
mandatory) to use the original type's name, appended with the unique suffix.

Public Class String_Helpers
Extends String

Public Sub NumberOfOcurrencesOfCharacter(character as Char) As Integer

Sub End
End Class

Inside the implementation, the extended type instance can be referred to via theMe keyword, and all its members can be accessed without prefix, as if
the extension method was part of the original type. Note that extensions do not have access to Private or otherwise invisible members. Essentially they
underlie the same access controls as any code that is not part of the original type itself.

Extension types can add any kind of member that does not imply storage, including:
e Subs/Functions
e Properties with Getter/Setter
e Operators

Subs/Functions and Properties added by an extension class can be instance (the default) or staticdhared). Extension types cannot add members that
require/definde storage on the class itself, sjuch as fields, events or properties with an implied field.

Extensible Types

Extensions can be defined forany named type, be it a Class, Struct, Interface, Enum, or Block. The type does not have to originate from the same
project as the extension.

No matter which kind of type is being extended, the extension will always use theClass keyword.
See Also
e Extension Types in Oxygene

o Extension Types in C#
o Extension Types in Java

Class Contracts

Mercury has support for Class Contracts, allowing you to provide Pre- and Post-Conditions for methods and type-wide Invariants to create classes and
structs that can test themselves.

Please refer to the Class Contracts topic for more details.
Keywords
e Ensure

e Check
¢ Invariants

e Old
¢ Require

See Also

e Class Contracts topic in Concepts Section
e Invariants and Pre- and Post-Conditions, and the old and implies Operators in Oxygene

Struct Inheritance

In Mercury, Structures can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike classes,
structs are not polymorphic, and members cannot be virtual or overriden.

Public Structure MyStructl
Public Dim a As Integer
Public Sub DoSomething()
Ena. Sub

End Structure

Public Structure MyStruct2
Inherits MyStructl

Public Dim B As String
Public Sub DoSomethingElse()
Ena Sub

End Structure

In the example above, MyStruct2 contains all the fields and methods ofMyStructl, as well as those defined forMyStruct2 itself.

See Also

e Structs in the Concepts section
e Records in Oxygene

Multi-Part Method Names

In order to fit in well with the API conventions on the Cocoa platform, Mercury method syntax has been expanded with support for what we call multi-
part method names.

Multi-part method names are essentially the ability for a method's name to be split into separate parts, each followed by a distinct parameter. This is
"required" on the Cocoa platform, because all the platform's APIs follow this convention, and we wanted Mercury to be able to both consume and
implement methods alongside those conventions without resorting to awkward attributes or other adornments, and to feel at home on the Cocoa
platform.

For cross-platform completeness, multi-part method names are supported on all platforms, and are also compatible withOxygene, C#, Swift and Java.
A multi-part method has parameter parts for each part, both when being declared:

Sub application(application As UlApplication, didFinishLaunchingWithOptions launchOptions As NSDictionary) ...

and when being called:

myClass.application(myapp, didFinishLaunchingWithOptions: options);

Named & Multi-Part Constructors

Mercury also allows declaring and calling named constructors with (optionally) multiple name parts.
For example:
Public Class Foo
¢ Public Sub New(name As String) ' regular nameless constructor
Ena"Sub
Public Sub New withName(name As String) ' regular named constructor
Ena.Sub
Public Sub New withName(name As String, andValue value As Object) ' multi-part constructor
Ena"Sub
End Class
These can be of course called as follows:
New Foo("Hello")

New Foo withName("Hello")
New Foo withName("Hello", andValue: 42)

See Also

e Multi-Part Method Names

Non-Nullable Types

Similar to how value types can be made nullable in standard Visual Basic by suffixing the typename with a question mark?), Mercury allows reference
types - which are nullable by default - to be marked as not nullable by suffixing the type name with an exclamation point).

This can make for more robust code, as variables, fields, properties or parameters declared as such can be relied on to not bélothing or Null. In many
cases, the compiler can even emit compile-time warnings or errors, for example when passing a literal Null or Nothing to a non-nullable parameter.

For consistency, the ! operator is alos allowed on value types, where it will be ignored, simliar to how the is allowed on referene types (are nullable by
default) and is ignored there.

Dim il As Int32 ' non-nullable by default, 0

Dim bl As Button ' nullable by default, null

Dim i2 As Int32! ' non-nullable by default, 0, same as above
Dim bl As Button? ' nullable by default, null, same as above
Dim i2 As Int327? ' nullable, null

Dim b2 As Button! = new Button(); ' not nullable, thus needs initialization

Please also refer to the Nullability topic in the Language Concepts section for more detailed coverage.

See Also
o Nullability
e Non-Nullable Types in Oxygene
e Non-Nullable Types in C#
e Non-Nullable Types in Java
e Value Types vs Referene Types
e Null VS. Nothing

Lazy Properties

Lazy Properties are a special kind of property that will be initialized delayed, on first access.

A property can be marked as lazy by prefixing theProperty keyword with Lazy. Lazy properties must provide an initializer, and cannot provide custom
getter or setter code.

Under the hood, the compiler will generate a property getter that will ensure the initializer is run, in a thread-safe fashion, the first andnly the first
time the property is read.

Public Lazy Property ExpensiveToCreate = New ExpensiveObject()

If a lazy property is not accessed as part of the execution flow of a program, the initializer will never run. A writable lazy property can still be explicitly
set to a value, from code, to override the default value. If this happensbefore the property is read the first time, the initializer will never be executed.

See Also

e Lazy Aspect
e Lazy Properties in Oxygene

Interface Delegation

Interface Delegation can be used to, well, delegate implementation of an interface and all it's members to a local field or property of the class (or
structure).

Essentially, the class can declare itself to implement an interface, without actually providing an implementation for the members of this interface,
itself. Instead, it can mark one of its properties or fields as providing the implementation for it. The member must, at runtime, contain a type thatdoes
implement the interface in question.

Public Interface Foo

Sub DoFoo()
End Interface

Public Class Bar
Implements IFoo

' Implementation of IFoo is delegated to an instance of FooHelper
Private Property Helper As FooHelper Implements IFoo = New FooHelper()

End Class

Class FooHelper
Implements IFoo

Sub DoFoo()
End Sub

End Class

Of course, Implements is also supported on "full" properties with custom Get/Set implementations:

Public Class Bar
Implements IFoo

' Implementation of IFoo is delegated to an instance of FooHelper
Public Property Helper As FooHelper
Implements IFoo

Get
End Get
Set
End Set
End Property
End Class
Implements can be used on plain fields, as well:
Public Dim Helper As FooHelper Implements IFoo = New FooHelper()

By default, members from a delegated interface arenot available on the type itself, but only by casting to the interface. Optionally, aPublic or Private
(the default) visibility modifier can be provided to make the interface members available on the class, as well:

Private Property FHelper As FooHelper Implements Public IFoo = New FooHelper()
Private Property BHelper As BarHelper Implements Private IBar = New BarHelper()

See Also

o Interface Delegation in Oxygene

Pointers

Mercury provides full support for pointers, compatible with Unsafe Code features on the.NET and full direct memory access on the unmanaged
platforms.

A pointer variable is declared via the newPtr type. A pointer can be untyped and reference an arbitrary memory location (a "void pointer"), or
represent a specific type. The generic (0f T) syntax is used to declare typed pointers:

Dim v As Ptr = ...
Dim m as Ptr(Of MyStruct) = ...
Dim s as Ptr(Of String) = ...

In the above example, v is an untyped pointer to arbitrary memory, whilem is a typed pointer to memory containing a MyStruct, ands is similarly typed
and points to a String. (Note that with String being a reference type itself, s does not point to the string itself, but rather to the four or eight bytes
holding the reference to the actual string instance, of course.)

Obtaining Pointers

A pointer is, in essence, the address of something, and as such, a pointer can be obtained by using the standardddressof keyword.
Dim a As MyStruct

m = AddressOf a
s = AddressOf "Hello Mercury!"

In this case, m now holds the memory address of the struct instance calleda, stored on the local heap. Ands holds the address of the reference to the
String object instance representing the literal "Hello Mercury!".

Using Pointers

Of course, a pointer is only useful if we can work with the data it points to. This is calleddereferencing. Every typed pointer exposes an implicit
member called Dereference that can be used to access the memory it points toDereference can be thought of as a property (or field) of the same type as
the pointer:

m.SomeField =5
writeLn(s.Length)

The above code sents the SomeField field of the struct to5, and then prints the length of the string thats refers to (14). Note that becausem points to
the very same memory that is the local struct stored ina, changing the field viam actually changes the original struct.

Pointer Math

Pointers, by definition, represent a single space in memory (and the data stored within), but it is common to use points to work with a continuous
layout of multiple items of the same type in memory - an array. The most common scenario is a Byte array - when operating with data in memory at
ist rawest level - but it can be an array of any type.

The + and - operators (and related arithmetic) can be used to increase or decrease a pointer to move it between different elements in memory. An
increase or decrease of "1" will move the pointer not by one byte, but by the size of the pointer's type (which can be determined, if necessary, using
the sizeof() System Function.

Dim b As Ptr(Of Byte) = AddressOf MyMemoryBlob
b.Dereference = 1

(b+1).Dereference = 2

(b+2).Dereference = 3

b+=3
b.Dereference = 4

The code above writes the values 1, 2, 3, 4 to the first four bytes starting at the address oflyMemoryBlob. Since a Byte is (of course) one byte in size,
the each pointer increment changes the pointer by one. Note that you can both change the value of b itself (b += 3), or add (or subtract) from it inline
to create a new temporary pointer (b+1).

Dim m As Ptr(Of MyStruct) = AddressOf MyArrayOfStructs
m.Dereference.SomeField = 1
(m+1).Dereference.SomeField = 2
(m+2).Dereference.SomeField = 3

m+=3
m.Dereference.SomeField = 4

Here, m references a struct which (assuming it contains more that a single field of type Byte) has a size of larger than one. As the pointem gets
adjusted, it moves to the next struct in memory, based on the type's size.

Allocating Memory

On the native platforms (Windows, Linux and Cocoa), memory can be allocated as needed, using themalloc() system API.

For example, the line below allocates enough memory on the heat to hold one instance of themyStruct structure, and returns a pointer to it. Of course,
this memory is not managed by the garbage collector or ARC, so care must be taken to release it properly by calling free(), when it is no longer
needed.

Dim m As Ptr(Of MyStruct) = rtl.malloc(sizeOf(MyStruct))

.f.r'ee(m)

See Also

e sizeof() System Function

Records

Records are special type of class or structure, originally introduced byC# 9.0 and (for structs) C# 10.0.

From Microsoft's documentation:
Records are distinct from classes in that record types use value-based equality. Two variables of a record type are equal if the record type
definitions are identical, and if for every field, the values in both records are equal. ... Value-based equality implies other capabilities you'll
probably want in record types. The compiler generates many of those members when you declare a record instead of a class.

Symmetrical to C#, Mercury lets you use theRecord keyword as prefix for Class or Structure in the type declaration, to mark a class or structure as
record. (In all languages, you can use the Record aspect to achieve the same).

Records can only descend from classes that are also records (or the baseObject, of course), and any descendents from a record must also be records.

Public Record Class Foo
Inherits Bar ' must also be a Record!

Public Property Name As String
End Class
Public Record Structure Baz
Public Property Name As String
End Structure
Equivalent using the aspect:
<[Record]>
Public Class Foo
Inherits Bar ' must also be a Record!
Public Property Name As String
End Class

<[Record]>
Public Structure Baz

Public Property Name As String
End Structure

Note: C#- and Mercury-style "Records" are not to be confused with therecord keyword in Oxygene, as in Pascal the term "record" is used to refer to
(reqular) Structures.

See Also

e record keyword in C#

e Record Aspect

e Records in C# 9.0 Records Structs in C# 10.0 Microsoft Docs
o Using Recored Types, Microsoft Docs

Auto-Release Pools w/ Using (Cocoa)
The standard Visual Basic Using statement has been extended for the Cocoa platform to allow theAutoReleasePool keyword to be used in lieu of another
expression. This creates a new Auto-Release Pool for this thread and cleans it up at the end of the using statement.
Using AutoReleasePool
NSApplicationMain(argc, argv)
End Using

Refer to the Auto-Release Pool topic in the Cocoa platform section for more details.

Cocoa Only

The Using AutoReleasePool syntax is relevant and available on the Cocoa platform only.

See Also

o Auto-Release Pool
o Automatic Reference Counting (ARC)

e using statement in Oxygene

VBLang

This page covers official user requests for Visual Basic.NET on VBLang and our plans to implement them in Mercury.
The following requests are already covered by Mercury, either explicitly, or by existing Elements compiler or tool chain technologies:

19 - Optional parameter implicit type conversion

20 - NameOf(obj) function that gives back a string with the full qualified variable name as it is in the source

29 - Implicit Default Optional Parameter

- Allow Single Line Comments in more places

- Variable scoped late binding (via the Dynamic type)

- Add Support ForPointers

- Allow comments after explicit line continuations

- Extension Properties

92 - Implicit interface implementations

135 - Late-binding without requiring Option Strict Off for entire file or project (via theDynamic type)

174 - Make the Optional keyword optional

152 - out arguments (and In)

164 - Can't call extension methods onObject

183 - Implicit Line-Continuation Comments

211 - Use of any installed programming language (Elements allows mixing of all six languages on the same project)
71 - Inline comments (* .. *./)

300 - unmanaged type parameter

354 - Make Optional optional (dupe of174)

355 - Nullable References

406 - WebAssembly support

BEBEE
w U1 o) |W |

®© o6 o6 © 06 06 06 0 0 0 0 0 0 0 0 0 0 0 o o

Additional candidates are:

24 - Case ... When ... Clauses

63 - Allow overridable and overriding events

87 - TryCast should support nullable value types as its target type

96 - Generic Property

169 - Using readonly property as target of ByRef

186 - Exit For j Statement to Break Out of NestedFor and For Each Loops
204 - Add shadow classes as a way to extend sealed classes

210 - Member functions in Enums

e © o o 0o o o o

Differences and Limitations

Mercury strives for 99% backward compatibility with Microsoft Visual Basic.NET so that ideally every existing VB project can be opened and built (for
the .NET platform only, of course) with no or very minor adjustments.

This section covers some of the smaller differences that you might encounter and that might require you to make manual adjustments in order to port
your project over to Mercury.

Conditional Compilation

Mercury, like all of Elements uses a stricter but more powerful processor for conditional compilation with#If Then. In some rare cases, you might need
to re-arrange your #If Then, #Else and #End If directives so that they do not intersect with language code structures.

Read the Conditional Compilation (Mercury) topic for more details.

You might also want to check out the sharedConditional Compilation topic for all languages, the list ofStandard Conditional Defines provided by the
Compiler and the defined(), exists() and and static() System Functions.

The My Class

Visual Basic.NET creates an implicitMy class (and related classes) with helper APIs for common application programming tasks. Mercury provides the
same classes, but they ar injected into the build in slightly different ways and it uses slightly diferent mechanics to determine what type of classes to
create.

Read the The My* Classes topic for more details.

XML Literals

XML Literals are supported and fully compatible with XElement/Ling to XML, on the.NET platform. On all platforms, XML Literals can be used with
XmlElement classes from [Elements RTL](/API/Elements RTL).

On the .NET Platform, a Project Setting is provided to determine the standard type of XML Literals to be used, when it cannot be inferred from context.
The default is Elements RTL, but projects Converted from a .vbproj will have the setting set to useLing to XML.

Read the XML Literals topic for more details.

Conditional Compilation

Like all Elements languages, Mercury supportsConditional Compilation in order to conditionally include or exclude code from being built into the
executable based on the current configuration, target platform, or other conditions.

The standard Visual Basic #If, #Else and #Elself directives can bed used to surround code with conditions for inclusion/exclusion. In addition, thedefined()
and static() system functions can also be used to tie blocks of code to conditions.

Defines

Conditional compilation is applied based on the presence or lack of presence of named conditional defines. Defines are identifers that live in a
namespace sepaarte from the rest of the code, and can be set fopr the project in four ways:

e Pre-defined by the compiler (e.g. ELEMENTS, DOTNET or COCOA).

e Set in the project via the <ConditionalDefines> (or, legacy, <DefineConstents>) setting, editable via the "Manage Conditional Defines" Sheet
Manager in Fire and Water and the Project Properties in Visual Studio.

e Passed to the compiler via the EBuild command line.

e Set in code using the #Const directive.

A define is either a simple name (e.g. 'DEBUG") or can optionally have a value assigned ('VERSION=5").

Defines (whether they have a value or not) can be treated as boolean values — if the define is present (defined), they evaluate torue, and if they are
not present (undefined) they evaluate to False:

#If DEBUG
' debug code goes here
#End If

Multiple defines can also be combined in a logical expression, usingAndAlso, OrElse, Xor and Not:

#If DEBUG AndAlso COCOA
' debug code for the Cocoa platform goes here
#End If

Finally, arithmetic expressions can be used to evaluate defines that have a value:

#1f DEBUG AndAlso COCOA AndAlso VERSION > 3
' Version 3+ debug code for the Cocoa platform goes here
#End If

Validity of Undefined Code

Unlike most other compilers, the conditional compilation system in Elements is not a dumb text-pre-processor that simply strips all undefined code
from the file before compilation. Instead, Conditional compilation directives are part of the syntax tree of a Mercury code file.

This brings with it two limitations:

e Code in sections of the file that will not be compiled int the binary due to the current set of conditional defines still must be syntactically valid
Mercury code. It can refer to types or identifiers that are unknown, but it must not be grammatically wrong.

e #If/#End IF sections cannot intersect language constructs. For example, an#If block may not start before of aSubs declaration and then close
inside it.

These restrictions allow several benefits. They allow the compiler (and IDE smarts) to build a single syntax tree that coversll versions of an #If'ed
code file, letting you get Code Completion in active and inactive portions of the code.

They also enable more advanced conditional compilation using the methods desxcribed in the next section.

Conditional Compilation w/ defined()

In addition to the traditional #If directive, Mercury has twoSystem Functions that allow you to integrate conditional compilation more naturally with the
normal flow of the language.

The defined() system function takes a string literal parameter with the name of a single define, and will -at compile-time - evaluate to True if the define
is set, and to False, if not. IfFalse, the compiler will (where possible) eliminate code that should not need to compile.

If defined("DEBUG") Then
' debug code goes here
End If

This code works the same as the example above, but it flows more natural with the regular execution flow of the Mercury language.
The real power of defined() comes into play when it can becombined with other conditions that evaluate at run time. Consinder the following example

If defined("COCOA") OrElse (defined("DOTNET") AndAlso Environment.OS = OperatingSystem.macOS) Then
' code that only works on Mac
End If

In this example, the first part of the condition,defined("COCOA"), will be evaluated statically at compile time:

e When building a native Mac (Cocoa) app, the If statement is determined to be true, and (through boolean shot circuit) the following code can be
included unconditionally.

e When building, say, a native Windows, both defined() conditions will evaluate to false, and the entire block of code will be excluded.

o However, if we're building for .NET, our executable could in theory run on any platform, including the Mac. Sincedefined("COCOA") is False but
defined("DOTNET") is true, the compiler will emit the If clause with the at-runtime check ofenvironment.0S, so the code block will run depending on
the actual platform.

Similar to defined(), the static() system function takes a simple boolean expression that must be possible to resolve at compile time. Its result igrue if
the expression is true, and False, if the expression is false.

Just as with defined(), the compiler will be able to smartly omit code where possible.

Note: just as with classic #If directives, code omitted due to defined() or static() must of course be syntactically valid, but is free to make reference of
types and identifiers that would be invalid. For example, this code will compile clean, even if ThisMethodDoesNotExist is unknown, since the static() call
evaluates to False:

If static(2+2=5) Then
ThisMethodDoesNotExist()
End If

Visual Basic Standard Defines

Microsoft's Visual Basic.NET has a few standard defines that are set by the compiler. In Mercury, these are handled differently.

e The VBC_VER define is not supported, as it refers tom specific versions of Microsoft's compiler implementation. Elements as its owrStandard
Conditional Defines you can use to check compiler version, platform and more. You can use #If ELEMENTS to check for Mercury vs. Microsoft Visual
Basic.NET.

e The DBEUG and TRACE defines are simple defines declared in the project. As far as the compiler is concerned, there is nothing special or magical
about them compared to defines you would make up yourself. By default, All new projects created from template haver these defines set for the
Debug configuration.

e The CONFIG define also a simple constant defined in the Elements project. For allMercury projects created from template, this constant will be
predefined for the two standard configurations, Debug and Release, that the templates create. If you add Mercury code to existing Elements
projects and need this define, you might need to add it yourself. If you add additional configurations to your project, yuo might also need to set it.

o the TARGET define will not be set by the Mercury templates, as it is used infrequently, and its terminology conflicts with how the term "Target" is
used in Elements. If needed, you can set this define yourself, of course.

e The _MYTYPE define will also not be set by the Mercury templates, as Mercury'sMy Type System does not rely on it.
When importing/converting .vbproj projects to Mercury, the importer will set theCONFIG for all configurations, if not already present in the original

project, and it will also add the DEBUG and TRACE defines for the Debug configuration, and set the_MYTYPE define, based on the MyType setting in the
.vbproj.

See Also

e The shared Conditional Compilation topic for all languages
e Standard Conditional Defines provided by the Compiler
o defined(), exists() and and static() System Functions

The My Classes

Visual Basic.NET creates an implicitMy class (and related classes) with helper APIs for common application programming tasks. Mercury provides the
same classes, but they ar injected into the build in slightly different ways and it uses slightly diferent mechanics to determine what type of classes to
create.

The My types are very specific to.NET, and not available on the other platforms.

How the My Classes are Generated

in Mercury, the My classes are not injected by the compiler, but are defined in a regular sorce code file that is generated by the build phase prior to
core compilation, and passed to the compiler along with your own source files. If you look at the more detailed version of the build log, you will see this
file in the list, it kis called My.pas (and for legacy reasons, its content is defined using theOxygene language, not Mercury).

The file will be generated if the following four conditions are met:

The VBGenerateMy setting is set toTrue (the default)

The project has a RootNamespace set

The project platform is .NET

The project has a reference to "Microsoft.VisualBasic.dll" and/or "Mercury.dll"

e o o o

The VBGenerateMy setting default to True, but you can explicitly set it toFalse if you want to forego the creation of aMy classes.

The My Classes and Code Completion

Because the My.pas is created on build, it's contents will not be available to code completion and other IDE intelligenceuntil the first time you compile
your project successfully.

Once your project has built, the classes become available to Code Completion and the Editor Code Model. Because they are diven by a plain source
file, you can even use "Go to Definition" to open the generated file and review it.

In Fire and Water, the file (among potentially others) is also available via the Other Files" item in the Jump Bar at the top of the editor.

Generated Classes

Visual Basic.NET uses the MyType project setting, also available to code via the_MYTYPE Conditional Define to determine what content to generate for
the My classes. Mercury does not use thus setting (although projectconversion does migrate it to a plain conditional define). Instead it relies on
Elements more advanced conditional compilation to generate all possibly items in the My.pas file, but compile only those that are applicable for the
current project.

We think this system should be mostly compatible with the use ofMy in most Visual Basic.NET projects, but pleaselet us know if you encounter any
problems or have suggestions for enhancements.

XML Literals

Mercury has full support for Visual Basic.NET's XML Literals, with a few additions.

In Microsoft Visual Basic.NET, XML Literals map to types from theLing to XML class library, such as XElement, XCData and the like. These classes ar eof
course speciifc to the .NET platform.

In Mercury, XML Literals instead map to types from the native XML Document implementation in our cross-platformElements RTL library, such as
XmlIElement. This allows XML Literals to be used onall platforms, and with a consistent (albeit different) APl on the resulting objects.

Mercury supports falling back to using XElement & Co for backward compatibility with existing code, when compiling for .NET and .NET Core. This can
be achived in two ways:

1. Assigning an XML Literal to a strongly typed variable, of a Ling to XML type will force the XML literal to use that mode, e.gDfm x As XElement =
<xml />."

2. Setting the "XML Literals (Mercury)" Project Setting from "Elements RTL" (the default) to 'Ling to XML" will force all XML Literals to default
to using XElement (unless assigned to a strongly typedXmiElement of course).

Keywords

The following words are treated as keywords in Mercury, and have special meaning:

RemObjects Mercury Keywords

AutoReleasePool - for Cocoa Auto-Release Pools
Check - Class Contracts

CTryType - optional variant of CType
Dynamic - Dynamic

Ensure - Class Contracts

Extends - Extension Types
Invariants - Class Contracts

Lazy - Lazy Properties

Null

old - Class Contracts

Ptr - Pointers

Record - Records

Require - Class Contracts

Zip - LINQ Operator

® o o6 o6 06 0 0 0 0 0 0 0 o o

Standard Visual Basic.NET™ Keywords

These standard keywords are defined by Microsoft's Visual Basic.NET language, and are also all used by Mercury:

AddHandler
AddressOf
Alias
And
AndAlso
As
Async
Boolean
ByRef
Byte
ByVal
Call
Case
Catch
CBool
CByte
CChar
CDate
CDec
CDbl
Char
Cint
Class
CLng
CObj
Const
Continue
CSByte
CShort
CSng
CStr
CType
CUInt
CULng
CUShort
Custom
Date
Decimal
Declare
Default
Delegate
Dim
DirectCast
Do
Double
Each
Else
Elself
End
EndIf
Enum
Erase
Error
Event
Exit
False
Finally
For
Friend
Function
Get
GetType
GetXMLNamespace
Global
GoSub
GoTo
Handles
If

If()
Implements
Imports
In
Inherits

®© © © 06 6 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 © 06 06 0 0 0 0 0 0 0 06 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Integer
Interface
Iterator

Is

IsNot

Let

Lib

Like

Long

Loop

Me

Mod
Module
MustiInherit
MustOverride
MyBase
MyClass
Namespace
Narrowing
New

Next

Not
Nothing
NotInheritable
NotOverridable
Object

of

On
Operator
Option
Optional

Oor

OrElse
Overloads
Overridable
Overrides
ParamArray
Partial
Private
Property
Protected
Public
RaiseEvent
ReadOnly
ReDim

REM
RemoveHandler
Resume
Return
SByte
Select

Set
Shadows
Shared
Short
Single
Static

Step

Stop

String
Structure
Sub
SyncLock
Then
Throw

To

True

Try
TryCast
TypeOf
Variant
Wend
Ulnteger
ULong
UShort
Using
When
While
Widening
With
WithEvents
WriteOnly
Xor

®© © © 6 0 0 0 0 0 0 6 0 © 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 06 06 0 0 0 0 0 0 06 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mercury Evolution

Since Visual Basic.NET™ is not being developed further by Microsoft, there is no language evolution process to keep track of. Our goal is to provide full
backwards compatibility with Microsoft's existing Visual Basic.NET™ implementation as of .NET 4.8, and evolve the Mercury language with our own
extensions from there.

RemObjects Go

RemObjects Go brings the Go language to the Elements platforms.

RemObjects Go is a 100% compatible implementation of the Go language supported for all Elements platforms — .NET, Cocoa, Android, Java, Windows,
Linux and WebAssembly.

For .NET and theIsland-backed platforms (except WebAssembly), a complete port of the Go runtime andGo Base Library is provided as well, so that
any standard Go code should compile and be usable out of the box. Functionality privided by this Go Base Library is also be optionally available to the
other four Elements languages on these platforms.

The goal for RemObjects Go is not to provide a full app development solution for all the platforms, as the Go language has many (purposeful)
limitations that we would have to accommodate for with Language Extensions, which we do not want to do at this stage. For example, Go does not
even have support for classes, which are crucial for most GUI frameworks.

The intended use for Go is mainly to allow to bring in existing libraries to use in applications (in particular on thé&land-backed native platforms, where
the OS-native APIs are often limited and low-level), and/or to allow simple Go-language code to be compiled as part of a larger project in one of the
other languages.

That said, within the capabilities of the Go language, Go code build with Elementsas full access to all the capabilities of the respective platforms -
e.g. full access to the .NET or .NET Core framework library when building for .NET, or the Cocoa APIs when building for iOS or macOS.

In addition to simply adding .go source files directly to your project,Go Import can be used to import whole existing Go packages (and their
dependencies) so they can be added to your project as Project References or Remote Project References.

Learn More

Learn Go (External Links to Go Tutorials not specific to Elements)

Language Extensions in RemObjects Go

Work with Go in Fire or Wateron Mac and Windows

Work with Go in Visual Studio on Windows

The Platforms — .NET, Cocoa, Android, Java, Windows, Linux and WebAssembly
Elements RTL — An optional cross-platform base library

EUnit — A cross-platform unit testing framework

RemObjects Go Home Page

Getting Started

e © o 0o 0o o o o

o Get set up with Fire on Mac
e Get set up with Wateron Windows
e Get set up with Visual Studio on Windows

Additional Tools
e Go Imports

Support

e Go Discussion Forum on Talk

Basics

Users familiar with one or more Elements languages will find a few areas that might work in surprising ways, when adding Go code to their project.

This topic should cover some of these caveats.

Namespaces

Like all Elements languages, Go has full support forNamespaces, including specifying namespaces for your own codeand accessing existing code
within the namespaces it lives in, for all the platforms. However, the way Go specifies namespaces behaves slightly different than the other languages.

Oxygene, C# and Java specify the full namespace for all types declared in a file at the top, whileSwift files do not specify a namespace at all and have
all types be part of the RootNamespace set in Project Settings.

Similar to Swift, Go derives the namespace for a file from theRootNamespace, but combines it with the physical folder structurewithin the project (i.e.
relative to the .elements project file) to form the full namespace. Thepackage keyword at the top of the file must match the last part of the namespace.

For example, if a project has a RootNamespace of "mycompany.myproject" and one or more files in a subfolder called 'tools", then the package name
specified in those files must also be "tools", and the full namespace of types declared in these files will be tnycompany.myproject.tools".

The "Go" root namespace

For .NET and Island-based platforms, Go comes with an extensiveGo Base Library (GBL) of commonly used types and functions, ranging anywhere
from mathematic algorithms to encryption, network communication and more.

Within .go source files, these types are available via the same namespaces as in Google's Go implementation, e.gbuiltin, fmt, crypto, and so on.
Since Elements projects can mix languages, a common scenario is to havesome Go code in a project that is predominantly using one of the other
languages, and referencing the GBL because the Go code depends on it. In order to not pollute the base name scope with all the Go namespaces,
types from the GBL are nested under a virtual "Go" namespace, when accessed from Oxygene, C#, Swift and Java.

In other words, where from Go you might seecrypto.md5, the same types will be accessible asGo.crypto.md5 from the other languages

File Name Suffixes

Different than in other languages, file names have relevance for whether a.go file gets compiled as part of a project or not. Go files can have one or
more suffixes appended to the base file name with an underscore.

If that suffix matches aplatform (such as " windows"), the file will only be compiled if it matches the platform of the project (or target). If it matches an
architecture (such as, "_armé64"), it will only be compiled when building for that particular architecture. Note that this includes platforms and
architectures not covered by Elements itself (e.g. a file with suffix "_sparc64" will never be compiled by Elements).

Projects with a suffix of " test" will only be compiled for Go test projects (which are currently not supported by Elements yet).
Files with unknown suffixes ("_foo") will be compiled as normal.

If in doubt, avoid underscores in names.

Scope of Go Base Library

Our goal is to support the full Go Base Library (GBL) for the following platforms and sub-platforms:

e .NET - .NET Framework and .NET Standart 2.0+ (and with that,.NET Core)
o Windows/Windows (Island)
e Linux/Linux (Island)

e Cocoa/Darwin (Island) - macOS, i0S, iPadOS and tvOS

A very limited go.jar with a few base types is provided for]Java, but the vast majority of GBL code is not compatible with the limitations of the Java
runtime, unfortunately.

The Go Base Library will not be available forToffee V1 Cocoa projects, since we're planning to havelsland/Darwin overtake this target as the default
back-end soon (see here for more details).

See Also

Go
Go Base Library
Project Settings

Namespaces

e o o o

Learning Go
If you are not familiar with Go yet, we recommend checking out some of the many sites, tutorials and books available about the Go language in

general, in addition to our own resources specific to our implementation of Go on this site.

Just about everything you learn about the Go language in general, and just about any decent book, tutorial or course out there will provide you with
the information you need to learn Go, and all you learn about the language will apply directly to using RemObjects Go and Elements.

e Go Language Home Page

e Go Language Official Documentation
e Go Language Tour

e Go By Example

e go.dev

Language Extensions

RemObjects Go adds no features to the Go language, in order to keep it as close to the original standard Go implementation as possible.

Instantiating Classes

While Go does not support defining class types, it can interfact with classes provided by the platform base libraries, or defined in code written in a
different Elements languages.

When working with class instances obtained externally, methods and properties of the instance can be accessed using the same paradigms as used
for Go structs. In addition, RemObjects Go also allows creating new instances of classes, again in a syntax that mirrors that of initializing a regular
struct:

var b = Button { Caption: "Test", Color: Color.Red }

Inheritance for Structs

In RemObjects Go structs can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike classes,
structs are not polymorphic, and members cannot be virtual or overriden.

Other Language Extensions

There are no language extensions for RemObjects Go, for now.

Struct Inheritance

In RemObjects Gold, structs can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike classes
in other languages, structs are not polymorphic, and members cannot be virtual or overriden.

type MyStructl struct {
aint
func DoSomething() {

}
}
type MyStruct2 struct : MyStructl {

b string
func DoSomethingElse() {

}
}

In the example above, MyStruct2 contains all the fields and methods ofMyStructl, as well as those defined forMyStruct2 itself.

See Also

e Structs in the Concepts section
e Records in Oxygene

Keywords

The following words are treated as keywords in Go, and have special meaning:

RemObjects Go Keywords

As of yet, Gold adds no custom keywords to the Go language

Standard Go Keywords

These standard keywords are defined by the Go language spec and are also all used by RemObjects Go:

break
case
chan
const
continue
default
defer
else
fallthrough
false

for

func

go

goto

if

import
interface
make
map
new

nil
package
range
return
select
struct
switch
true
type

var

® 6 6 o6 06 06 06 06 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Go Evolution

Without promising exact timelines for individual features, our goal is to try and support any new Go language changes introduced by Google in a
timely fashion after they have been finalized, often before and sometimes shortly after they have shipped in Goole's Go compiler.

Current language and base library support matches Go 1.13.5.

RemObjects Swift

RemObjects Swift (code-named "Silver") implements Apple's Swift language, which you might already be familiar with from working
with it in Xcode for your iOS or Mac projects. RemObjects Swift takes it a step further by also targeting the .NET, Android, Java, Windows, Linux and
WebAssembly platforms (in addition to iOS, Mac, tvOS, visionOS and watchOS, of course).

Different from our own Oxygene language, where we add new and exciting language features frequently, our aim with the Elements compiler front-
end is to stay as close and true to the Swift language as possible, and to follow where Apple takes the Swift language with their own compiler.

The Elements compiler will evolve as the official Swift language evolves, but our goal is not to drive the Swift language forward (and diverge from
Apple's standard) ourselves, but rather to provide a compiler and language - for .NET, Cocoa and Java - that will feel like "true Swift" to everyone
familiar with the language.

That said, RemObjects Swift does adds afew features to the standard Swift language to make it fit better on all the platforms it supports. These are
covered under Language Extensions. It also has a few notable differences and limitations, as covered underDifferences and Limitations.

Learn More

Language Extensions in RemObjects Swift

Work with RemObjects Swift in Fire or Wateron Mac and Windows

Work with RemObjects Swift in Visual Studio on Windows

The Platforms — .NET, Cocoa, Android, Java, Windows, Linux and WebAssembly
Elements RTL — An optional cross-platform base library

EUnit — A cross-platform unit testing framework

Getting Started

e o o o o o

o Get set up with Fire on Mac
o Get set up with Wateron Windows
o Get set up with Visual Studio on Windows

Support

o RemObjects Swift Discussion Forum on Talk

Differences and Limitations

This page describes differences and caveats in RemObjects Swift vs. Apple's standard Swift implementation. These differences fall into three
categories:

Additional Features

Please check out the Language Extensions topic for detailed coverage of the features RemObjects Swift addson top of regular Apple Swift. These are
few, and only added with extreme caution where necessary to properly embrace all platforms.

e Language Extensions

RemObjects Swift also extends error handling to cover both Swift style errorsand platform exceptions. You can read more about that here:

e Exceptions and Error Handling

Temporary Limitations

These are temporary limitations or differences in our implementation of Swift. They are due to the beta status or that we simply haven't found proper
solutions for them yet on all platforms, and our goal is to resolve these over time.

none currently known

Permanent Differences

The differences listed here are permanent and intrinsic to Silver's implementation of Swift, usually driven by demands of the platforms. We expect
these differences to remain indefinitely.

e Silver uses the platform String types (with some extensions) which are UTF-16 based, implemented as reference types, and immutable.

e Type Extension are limited when the extended class is declared in a different project/assembly, and they do not support (a) adding new fields or
stored properties or (b) implementing additional protocols.

e On the Cocoa and Island platforms, not every (non-class) type descends from the rootObject class. As a result, in Silver types that do not descend
from Object are not compatible with the Swift-defined Any type.

e On the Cocoa platform, protocols cannot be applied to structs when using theToffee back-end. This limitation is lifted in the upcoming multi-
platform Island back-end.

Language Extensions

RemObjects Silver adds a few features to the Swift language to make it fit better on all the platforms it supports. We try to keep these extensions to a
minimum, and tastefully within the design aesthetics of the Swift language.

Where additional keywords are needed, we follow the C-style language convention of prefixing these with two underscores (" ") to avoid conflict with
future changes to the official Swift language.

Iterators

Iterators are a special type of method that provide an easy and comfortable way to implement custonfequences.

Partial Classes

Partial Classes allow a single class (or struct) to be declared spanning multiple source files.

Static Classes

Static Classes are classes where all members are static. Silver provides a convenient shortcut to mark aclass as static instead of having to mark each
individual member.

Custom Cast Operators

Cast Operators allow you to implement custom type casting behavior for your own types, bot. for implicit and explicitas) casts.

Events

Support for .NET-style multi-cast Events is provided to allow Swift code to fully participate in the .NET event system.

Pure Fields

New in Elements 9.3, the _ field keyword works symmetrical to var to declare a field inside a class or struct. Unlikevar, the field will be implemented as
plain low-level field, and not as property. This distinction can be important when, for example, dealing with Reflection on .NET.

Await Statements

The __await keyword is supported on .NET to unwrap asynchronous calls, similar to howawait works in Oxygene and C#. See theAwait Expressions
topic for more details.

Lock Statements

Similar to C# or Oxygene,__lock Statement can be used to ensure thread-safe access to a block of code.

Using Statenents

Also similar to C# or Oxygene, a__using Statement can be used to make sure an object is properly disposed through thelDisposable/Closable
interfaces after the code that uses it is finished.

External Functions

Silver introduces the __external keyword to allow the import of external APIs via P/Invokeand JNI.

Mapped Types

RemObjects Silver has full support for Mapped Types, which are inlined types useful to create cross-platform wrappers with zero overhead. While you
won't often implement your own mapped types, you will likely use existing ones, for example from the Sugar library.

Inheritance for Structs

In RemObjects Swift, structs can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike classes,
structs are not polymorphic, and members cannot be virtual or overriden.

Aspects & Attributes

Aspects are special attributes that influence how the compiler emits the final executable. Aspects are covered in more detail in their own section,
including how to use them and how to create your own.

Class Contracts

Class Contracts allow code to become self-testing, with Pre- and Post-Conditions for methods and type-wide Invariants.

Smaller Extensions

* Not meant for user code, the; (inverted exclamation point) suffix operator can be used to mark a type as being nullable only if it is a reference
type - essentially giving it the same Nullability behavior of the type name being used on its own inOxygene or C#.

Silver allows named parameters in attributes, as well as attribute scope prefixes using:.

_ out can be used similarly toinout, but parameters will be one-directional.

Silver supports the same attribute prefixes as Oxygene and C#, as well as a Swift-specific @main: attribute prefix for applying attributes to the
entry point.

o For symmetry with #available, a special #defined() syntax is provided around the defined() function for conditional compilation.

.

.

.

Exception Handling

Exception handling is a crucial feature on the .NET and Java/Android platforms (and frankly, also comes in very handy on the Cocoa platform as well).
Silver extends the Swift 2.0 error handling syntax to also support for exception handling on all platforms, as covered in more detail in the Exceptions
and Error Handling topic.

RemObjects Swift originally provided aninterim syntax for exception handling in Swift 1.0 that has been being deprecated moving forward, in favor of
the new do/catch syntax.

Note that this Exception Handling Language Extension we provided for Swift 1.0 has been deprecated as of Elements version 8.2, and will be removed
in a future update. Please refer to the Exceptions and Error Handling topic for the new way to deal with exceptions and errors consistently.

Iterators

Iterators provide an easy and comfortable way to implement customsequences in your Silver project.

Iterators are special types of methods (uncs) that return a sequence. When called, the body of the iterator method is not actually executed, but a new
object is instantiated, representing the sequence. Once code starts to enumerate over the sequence, for example in a for in loop, the iterator's method
body will be executed piece by piece in order to provide the sequence elements.

A sample, as the saying goes, says more than a thousand words, so let's start by looking at a real live iterator implementation:

func getEvenNumbers() -> I1Sequence<Int> {
for vari: Int = 0; i < 100; i++ {
_yield i
}

That's a fairly simple iterator method that will provide a sequence of all even numbers between 0 and 100. There are two things that make this
method special:

First, the method return type is aniSequence<T> protocol type.

Second, you will notice the use of the__yield keyword inside the for loop. This keyword is specific to iterator implementations, and used to pass back
the individual elements of the sequence. You can think of this as the equivalent of return i, but instead of exiting the method, the value of i will be
returned as part of the sequence, and the iterator will continue its work.

This is a lot to take in on first sight, so let's walk through what happens when this iterator is used in code such as this:

let numbers := getEvenNumbers()
for n in numbers {

printin(n)
}

The first line calls our iterator method, but instead of executing any of the code we wrote igetEvenNumbers, this will simply create a new sequence
object and pass it back, storing it in the numbers variable. At this point, none of the "hard work" needed to calculate the sequence will be performed
yet.

Next, the for in loop runs over the sequence, which in turn starts executing the iterator body. Thefor loop starts at 0, and reaches theyield keyword. At
this point, the iterator will halt, and the first value, 0 will be passed back as the first element of the sequence. The body of thefor in loop in the second
snippet now executes with n = 0 and writes that value out to the console.

As the for each loop resumes, it will try to get the next value of the sequence - which in turn resumes our iterator body. Théor loop continues toi = 2,

and the game continues.
Eventually, the iterator will reach 100, and exit - the end of the sequence has been reached, and théor each loop too will terminate as well.

As you can see in this simple example, iterators can make it very easy to implement complex sequences by allowing the entire buildup of the
sequence to be written as normal sequential code. Beyond what is shown in this sample, iterators can contain _ yield statements in various places,
contain nested loops, conditions and almost all of Swift's language constructs that you can use in ordinary methods. This allows them to perform
operations that would be very complex to achieve if every iteration of the sequence would need to be encapsulated independently.

Delegating Iteration to a Sequence

The yield keyword also supports delegation of the iterator to a second sequence, as shown below:
var moreValues = [3,4,5,6] // array of Int, can act as sequence
func mylterator() -> ISequence<Int> {

_ yield 1 // adds "1" to the sequence

__yield 2 // adds "2" to the sequence

__yield moreValues // adds "3" thru "6" to the sequence
_ yield 7 // adds "7" to the sequence

Limitations inside Iterator Methods

Since yielding in an iterator returns back to the caller, it's not possible to_yield from within a protected block such as a__try/ _ finally block, as there is
no guarantee that the caller will actually finish looping over the sequence.

See Also

e Sequences
e yield statements in Oxygene

Partial Classes

Partial Classes allow a single class (or struct) to be declared spanning multiple source files by having each part amended with the partial keyword. All
parts must be declared with the same visibility level. All parts must either declare the exact same set of ancestors, or only one part may declare any
ancestors at all.

There is not much use for partial class syntax in regular user code, as Swiftextensions can perform all the same functionality (and are, in fact, treated
identical to partial classes when defined within same project), but the _ partial syntax is provided for use in code generators such as .NETCodeDom,
which sometimes use code patterns that do not match well with the extension syntax.

Static Classes

RemObjects Silver allows classes to be marked with thestatic keyword to indicate they are purely static. All members defined in the class will
automatically become static, whether they themselves are marked as static or class, or not. Static classes cannot be instantiated.

Example

public static class Helpers {
public func Helper() { // will be static
}

}

Version Notes

e Support for static classes is new inVersion 8.2.

Custom Cast Operators

RemObjects Silver allows the implementation of implicit and explicit cast operators on types by declaring a static func named_implicit or __explicit.
Cast operators funcs must have one parameter and a result, and one of the two must be the type they are declared on.

public class Foo {
public static func __implicit(_ other: Foo) -> Bar {
return createBarFromFoo()

}

public static func __explicit(_ other: Foo) -> Bar {
return createBarFromFoo()

}

public static func __implicit(_ other: Bar) -> Foo {
return createFooFromBar()
}

public static func __explicit(_ other: Bar) -> Foo {
return createFooFromBar()
}
}
With an explicit cast operator declared on a class, explicit casts from one type to the other are allowed:

let bar = Bar()
let foo: Foo = f as? Foo

With an implicit cast operator declared on a class, automatic casts from one type to the other are allowed:

let bar = Bar()
let foo: Foo = f // no explicit cast necessary

Events

RemObjects Silver extends the Swift language with support for .NET-styleEvents via the _events keyword.

Events are provided mainly to let Swift fit in well on .NET, where the use of them is unavoidable. But although events most commonly used in .NET and
both Cocoa and Java have different paradigms to deal with similar concepts such as Blocks and Delegates, Delegate Protocols (Cocoa) andAnonymous
Interfaces (Java), events are supported in Swift on all platforms.

Declaration Syntax

Events are pretty similar to properties in concept, and that reflects in the declaration syntax. An event member is declared similarly with the event
keyword, followed by a name for the event and the event type, which must be a Block type:

__event Callback: (Int) -> () // using an inline block definition
__event Click: EventHandler // using a predefined block/delegate type

Like properties with short syntax, the compiler will take care of creating all the infrastructure for the event, including private variables to store
assigned handlers, and add and remove methods.

Assigning Events

Externally, code can subscribe or unsubscribe from receiving notifications for an event by adding or removing handlers. This is done with the special
+= and -= operators, to emphasize that events, by default, are not a 1:1 mapping, but that each event can have an unlimited number of subscribers.

func ReactToSomething(aEventArgs: EventArgs) {
}

/...
myObject.Callback += ReactToSomething
/...
myObject.Callback -= ReactToSomething

The += operator adds the passed method (also called event handler) to the list of subscribers. The-= operator removes the method from the list again,
assuming it was added before. Neither operator looks for duplicates, so if += is used multiple times with the same event handler, that handler will
trigger multiple times when the event fires. Similarly, -= removes the first occurrence of the event handler from the list.

When the event later fires, all the subscribers that have been added will be notified. They will be called one by one, but the order will be
undetermined.

Who can add and remove subscribers to an event is controlled by the visibility of the event (see below).

Calling Events

An event can be called, or fired, by simply calling it like a method. Before doing so, one should ensure that at least one subscriber has been added,
because otherwise firing the event will cause a Null Reference Exception. You can check if an event has one or more subscribers by comparing it to nil
or using the assigned() system function:

if Callback !'= nil {
Callback()

Only the type that defines the event can fire it, regardless of the visibility of the event itself.
Visibility

Like all members of a type, events can be marked with a visibility modifier, such aspublic, internal, or private. This visibility extends to the ability toadd
and remove subscribers, but not to raise (or fire) the event, which is always private.

Virtuality

Events are virtual, and can be overriden in base classes.

Await Expressions

An await expression can be used to write asynchronous code in a linear fashion. It can be applied to methods that return &ask, as well as to methods
that expect a callback closure as final parameter.

Code can be written as if the methods in question return a value right away, and the compiler will handle the task of unwrapping the provided code
and handle the callbacks properly. Under the hood, _ await will break the method into different parts, scheduling them to be executed asynchronously
once the awaited actions have been completed.

Await with Tasks

Await with Tasks works similar to the "async/await" pattern in other languages, such as C#,0xygene or even modern JavaScript. A method is declared
as returning a special Task type either explicitly, or using language sugar such as the C#async keyword. The returned Task instance can be used to
keep track of the status, and be notified when the result is available - which the __await keyword abstracts:

func test() -> Task<String> {
let task = Task<String>() {
Thread.Sleep(10000)
return "Result!"

}
task.Start()
return task

func OtherMethod() {

let message = __await test();
print(message)

}

At the point of the __await in OtherMethod, the actual method containing the await call will finish. All subsequent code (such as the call toorint in the
example above) will be wrapped in a helper type, and execute once the task as completed.

Await with Closures

Await can also be used with methods that take a "callback" closure as last parameter. The parameters of the closure will turn into return values of the
call. For example, consider the following call using Elements RTL's Http class:

func downloadData() {
Http.ExecuteRequestAsjson(HttpRequest(URL)) { response in
if let content = response.Content {
dispatch_async(dispatch_get_main_queue()) {
data = content
tableView.reloadData()
}
}
}
}

This code uses two nested closures, first to wait for the response of the network request, and then to process its results on the main Ul thread. With
await this can be unwrapped nicely:

func downloadData() {
let response = __await Http.ExecuteRequestAs|son(HttpRequest(URL)) {
if let content = response.Content {
__await dispatch_async(dispatch_get_main_queue())
data := content
tableView.reloadData()
}
}
Note how the parameter of the first closure,response becomes a local variable, and how __await is used without return value on thedispatch_async call.
For callbacks that return more than one parameter,__await will return a tuple, e.g.:

let (aValue, aError) = __await tryToGetValueOrReturnError()

See Also

e await Expressions in Oxygene
e await keyword in C#

Lock

The __lock statement can be used to place a thread safe lock on an object. Only one thread at a time can have a lock on an object, at the end of the
lock statement the lock is released.

let mylock = Object()
_ lock mylock {

// thread sensitive operations.

}

Limitation on Island

The __lock keyword is limited to work onMonitor classes, onlsland. On the other platforms, any type can be locked on.

See Also

e locking keyword in Oxygene
e lock keyword in C#
e Locked Aspect

Using
A __using statement can be used to make sure an object is properly disposed through the IDisposable/Closable interfaces after the code that uses it is
finished.
__using let fs = FileStream("textfile.txt", FileMode.Open) {
let b = byte[](123)

fs.Read(b, 0, b.Length)
} // the filestream is closed here.

See Also
e Disposable Pattern

e using keyword in Oxygene
e using keyword in C#

External Functions

RemObjects Silver adds the __external keyword as language extension, to allow the declaration of APIs to external functions in a linked binary. This can
be used with P/Invoke (.NET) and NI (Java), as well as to import C-based APIs on Cocoa.

The keyword works symmetrically with the matching external and extern keywords in Oxygene and C#.

See Also

e P/Invoke (.NET)
o Java Native Interface (Java)
o Dllimport attribute

Version Notes

e _ external is new in Version 8.2.

Mapped Types

Mapped type are a unique feature of the Elements compiler. They let you create compatibility wrappers for types without ending up with classes that
contain the real type. The wrappers will be eliminated by the compiler and rewritten to use the type the mapping maps to.

When working with Swift, you will most commonlyuse mapped types (for example as provided by theSugar cross-platform library). Using mapped
types is seamless, and they behave just like regular non-mapped types.

You will not often need toimplement mapped types yourself, but for when you do, RemObjects Silver - like Oxygene and C# —provides a syntax for
implementing mapped types when needed, with the _mapped keyword and the => operator.

Please refer to the Mapped Types topic in the Language Concepts section for more details.

Struct Inheritance
In RemObjects Swift, structs can specify an ancestor, allowing a newly declared struct to inherit the fields and methods of its base struct. Unlike
classes, structs are not polymorphic, and members cannot be virtual or overriden.
MyStructl = public struct {
public var a: Int

public func DoSomething() {

.
}

MyStruct2 = public struct : MyStructl {
public var b: String
public func DoSomethingElse() {

)
}

In the example above, MyStruct2 contains all the fields and methods ofMyStructl, as well as those defined for MysStruct2 itself.

See Also

e Structs in the Concepts section
e Records in Oxygene

Aspects

Aspects are special attributes that influence how the compiler emits the final executable. In Swift, they use regular attributes syntax. Aspects are
covered in more detail in their own section, including how to use them and how to create your own.

See Also

e Aspects

o Writing Aspects
e Predefined Aspects and Attributes

Class Contracts

RemObjects Silver has support for Class Contracts, allowing you provide Pre- and Post-Conditions for methods and type-wide Invariants to create
classes and structs that can test themselves.

Please refer to the Class Contracts topic for more details.

Keywords
e __ensure
e _ invariants
e _old
e _ require
See Also

o Class Contracts topic in Concepts Section
e Invariants and Pre- and Post-Conditions, and the old and implies Operators in Oxygene

Exception Handling (Legacy)

Note that this Exception Handling Language Extension we provided for Swift 1.0 has been deprecated as of Elements version 8.2, and will be removed
in a future update. Please refer to the Exceptions and Error Handling topic for the new way to deal with exceptions and errors consistently.

Silver extends the Swift language with support for exception handling on all platforms, simply because exception handling is a feature that cannot be

avoided when working with the .NET or Java frameworks.

It introduces a few new keywords for this, namely _ throw to raise an exception, and__try, _finally and _ catch to handle them.

Throwing Exceptions

An exception can be thrown by using the_ throw keyword followed by an exception instance, for example:

__throw ArgumentException("Parameter foo needs to be larger than 5")

When inside an exception handling block (more on that below), the throw keyword can also be used on its own as a statement to re-throw the current
exception.

Handling Exceptions

To protect code against exceptions, it can now be enclosed in a _try code block followed by a set of curly braces:

_try {
printin("This code is protected against exceptions.")

If an exception is encountered inside a__try block (including any code that the__try block calls out to), execution of that block is immediately
terminated at that point.

How code execution will proceed will depend on the blocks following the__try. There are two ways react to exceptions:
Finally Blocks

_ finally blocks can provide code that is guaranteed to be executed, regardless of wether an exception occurred or not. They are helpful for cleanup
tasks - for example for closing file handles or disposing of other resources.

After the execution of the_ finally block, any exception that had occurred will be re-thrown. In other words, the_finally block does not catch the
exception.

_try {
__throw Exception("Throwing a random exception here.")
printin("This code will never run.")

}
_ finally {
printin("This code will always run.")

printIn("This code will also never run.")
Catch Blocks

_ catch blocks can contain code that will only run if an exception is thrown. They are helpful for handling error conditions. By default, as the name
implies, a _ catch block catches the exception, handles it, and execution will continue after the block as if the exception never happened. The_throw
keyword can be used to re-throw the exception, i.e. treat it as not caught and let it bubble up the call stack.

_try {
_ throw Exception("Throwing a random exception here.")
printin("This code will never run.")

}
_ catch {
printin("This code will run only if an exception occurred above.")
printin("This code will also run, because the exception was handled.")
Optionally, an exception type can be provided in order to only handle certain exceptions:
_try {
__throw Exception("Throwing a random exception here.")
printin("This code will never run.")

}
__catch E: FileNotFoundExeption {
printin("Error \(E.Message) occurred")

printIn("This code may or may not run.")

Each _ try block must be followed by at least one of the above two block types to react to the exception. Zero or one finally can be present, depending
one whether there is cleanup code that needs to run on now.

Any variable number of __catch blocks can be present, provided each of them catches a different exception type. If more than one_catch block is
present, the first block that matches the concrete exception type will execute.

Only a single __catch block will ever be executed, even if multiple successive blocks would match the exception. This means that if you are looking to
catch related exception classes using different _ catch blocks, the blocks should be ordered with the most concrete class type first, and the most base
class type (or possibly a type-less _ catch block) last.

Note that this Exception Handling Language Extension we provided for Swift 1.0 has been deprecated as of Elements version 8.2, and will be removed
in a future update. Please refer to the Exceptions and Error Handling topic for the new way to deal with exceptions and errors consistently.

See Also

e Exceptions and Error Handlin

o Exception Handling, in Concepts
e Exception base class

Exceptions and Error Handling

RemObjects Swift combines the error handling syntax, available since Swift 2.0, with the handling of real platformExceptions.

Both error and exception handling is done with thedo/catch keyword combination, and cleanup code (the traditionalfinally block of exception handling)
are performed with an independent defer statement.

« do/catch work pretty much as exception handling works in the other languages - the code inside thedo scope is protected against failures, and
one or more catch clauses can be provided where execution will continue if an exception or error occurs. Separateatch clauses can be defined to
catch different kinds of errors, by class, or by more complex Pattern.

o defer blocks can be used to specify code that will runat the end of the current scope regardless of whether an error or exception occurred, or
whether the method exited prematurely via a simple return. This makes defer statements incredibly useful even when error handling is not
involved.

Exceptions vs. Errors

The do/catch syntax combines handling of both errors (a concept which does not translate to the other platforms/languages)and exceptions in the
following ways.

Exceptions

RemObjects Swift uses the regular do/catch syntax to protect code against exceptions, and executes the closest matchingcatch block when an
exception occurs. Keywords aside, this is no different than regular try/catch or try/except blocks in C# or Oxygene.

If no variable is provided for thecatch block, a default error variable will be in scope, containing the current exception. It can be re-thrown with thehrow
keyword.

Note that the try (or try!) keyword is not used or necessary forexception handling. It can be specified and will be ignored. This is becauseany
statement can, potentially, throw an exception, and making every statement require a try would be cluttery.

do {

let x = Int32.Parse("Five");
} catch {

printin(*could not parse string, failed with \(error)")
}

Errors

In addition, thetry or try! keywords can be used inside thedo scope to call methods that follow Cocoa's and Swift's pattern of returning arerror or
NSError value, explicitly or by being declared withthrows in Swift.

When called with the try keyword, these methods drop the lastError parameter, and their result is converted to be non-nullable (for functions that
return a nullable value) or to be void (for functions that return aBoolean). When the function call returnsnil or false, the remainder of the do scope will be
skipped, and execution will continue with the closest matching catch clause for the received NSError. No actual platform exception will be raised.

These methods can also be called the "old fashioned" way,without the try keyword, and handling the return value and any returned error value will
be up to the calling code (just as it would be from other languages). The calls will then not participate in any error handling logic provided by a
potential do/catch.

do {

try NSFileManager.defaultManager.contentsOfDirectoryAtPath(path)
} catch {

printin("could not read directory, failed with \(error)")

VS.
var error: NSError?
if INSFileManager.defaultManager.contentsOfDirectoryAtPath(path, error: &error) {

printin("could not read directory, failed with \(error)")
}

The NSError Pattern

Exceptions can happen on all platforms (includingCocoa). Errors are limited to three specific scenarios:

e Methods that return a nullable result value and a nullable__out NSError value as last parameter, onCocoa.
e Methods that return aBool result value and a nullable__out NSError value as last parameter, onCocoa.
e Methods declared in Swift, using the throw keyword.

try?
The try? syntax is also fully supported, for both exceptions and errors, and will convert any exception or error into ail value:

let x = try? Int32.Parse("Five");
//x will be nil

Converting Errors to Exceptions

RemObjects Swift also allows you to use thetry ortry! keywords to make calls to methods that follow theNSError pattern, without a do/catch clause. If
the method containing the try! statement itself follows the NSError pattern, any error received will be passed on to the caller of the current method. If
the method does not follow the pattern, any error will be wrapped in a platform exception and thrown up the call stack.
Once again, try? will catch errors and convert them into a nil result.
func countFilesInDirectory() -> Int throws {

let files = try! NSFileManager.defaultManager.contentsOfDirectoryAtPath(path)

return files.count

}

Throwing Errors and Exceptions

The throw keyword can be used to throw an Exception (all methods) or an Error (inside methods that follow theNSError Pattern).
Legacy Exception Handling Language Extension

Note that the temporary Exception Handling Language Extension we provided for Swift 1.0, using _ try, _ finally and __catch, has been deprecated as of
Elements version 8.2, and will be removed in a future update.

See Also

e Exception Handling, in Concepts
e Exception base class

e Legacy _ try/_finally/ catch language extension

Keywords

The following words are treated as keywords in Swift and have special meaning:

RemObjects Swift Keywords

RemObjects Swift adds the following handful of keywords to support someLanguage Extensions in Apple's standard Swift implementation:

_ abstract — used for explicitly marking methods and types as abstract
__await — .NET-style unwrapping of asynchronous calls
_ ensure — Class Contracts (Post-Conditions)

__event — .NET-style Events

__explicit — Cast Operators

_ external — External Library Imports

_ field — Declare a non-property field

__implicit — Cast Operators

__invariants — Class Contracts (Invariants)

__lock

__mapped - Mapped Types

_ old — Class Contracts (Post-Conditions)

_out —

_ partial — Partial Classes

__reintroduce

_ result — accessing the result of a method

_require — Class Contracts (Pre-Conditions)

__using — Using Statenents

_ yield — lterators

®© o6 © 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 o

Deprecated Exception Handling Keywords

These keywords were defined in RemObjects Swift 8.1 forException Handling. With[Swift 2.0 and later now supporting error handling officially, these
are being deprecated in RemObjects Swift 8.2 and beyond, and will generate errors. They will be completely removed in subsequent versions of
RemObjects Swift.

Please refer to the Exception and Error Handling topic for more details on the new error handling support in Swift 2.0 and RemObjects Swift 8.2 and
later.

e _ throw
o _try

e _ catch
e _ finally

Standard Swift Keywords

These standard keywords are defined by Apple's spec for the Swift language, and are also all used by RemObjects Swift's implementation of the
language:

__consuming
__owned

_ shared
COLUMN
FILE
FUNCTION
LINE
_modify
_read

as
assignment
associatedtype
associativity
autoreleasepool
break

case

catch

class
ConstUnsafePointer
continue
convenience
default

defer

deinit

didSet

do

dynamic
dynamicType
else

enum
extension
fallthrough
false
fileprivate
final

for

func

get

guard

®© © 6 06 06 0 06 06 0 0 0 0 6 0 0 0 0 0 0 0 06 06 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0

if
higherThan
lowerThan
import

in

indirect

infix

init

inout
internal

is

lazy

left

let

mutating

nil

none
nonmutating
open
operator
optional
override
postfix
precedence
precedencegroup
prefix
private
protocol
public
repeat
required
rethrows
return

right

safe

self

Self

set

some

static

strong

struct
subscript
super
switch

throw
throws

true

try

typealias
unowned
unsafe
unsafeAddress
unsafeAddressOf
unsafeMutableAddress
UnsafeMutablePointer
UnsafePointer
var

weak

where

while

willSet

© © 0 © 0 6 0 © 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 06 06 0 o

Swift Base Library

The Swift Base Library is a small library that can be optionally used in Swift projects compiled with the Elements compiler. It provides some of the core
types, classes and functions that, while not part of the Swift language spec per se, are commonly used in Swift apps (and provided in a similar Swift
Base Library in Apple's implementation).

This includes types such as the Swift-native array and dictionary types, and base functions likeprintin().

The Swift Base Library ships precompiled with the Elements compiler. New projects created with one of the RemObjects Swift project templates will
automatically have a reference to the library, but if you are adding Swift files to a project that started out with a different language, you can add a
reference to your projects via the Add References dialog in Fire or Visual Studio, where the Swift library should show automatically.

The library is called swift.dll on .NET, libSwift.fx on Cocoa and swift.jar on Java/Android.

The code for the Swift Base Library is open source and available onGitHub. We appreciate feedback, contributions and pull requests.

See Also

e Swift Base Library API Reference

Swift Evolution

With Elements 12, we are ceasing further efforts to keep Silver in sync with new language features added to the Apple swift language.

When Swift was first announced back in 2014, it seemed that Apple had a winner on their hand - they revealed an exciting new language that was still
basic, but showed a lot of potential and introduced a number of intriguing design ideas. So of course we swiftly jumped on board supporting the
language in our compiler.

Unfortunately, over the past five or so years, Apple's direction of Swift has change drastically, and is no longer in line with our vision (or, in come
cases, platform-driven capabilities) for Swift in Elements.

Ever since open-sourcing the language and switching to a community-driven development process, the language "design" has gotten increasingly
insane and unmaintainable. Swift's over-wrought and over-designed generic system has completely lost its plot, and is next to impossible to replicate
within the exiting platforms that Elements compiles for. And in general, each new language feature proposal that gets approved and implemented by
the Swift team seems more crazy and convoluted than the last, and designed to just make the language (and code written in it) unreadable and the
language itself incomprehensible.

We're tempted to list examples, but really just pick any random feature numbered higher than 200, linked below, to see what we mean.

As such, we will cease development efforts of Silver aimed at keeping it up to date with new syntaxes and language features in Apple Swift. We will of
course keep Silver updated and supported, in its current form, as part of the Elements language family, and keep it available to build and maintain
existing projects.

We do recommend the migration to different Elements languages, for new code. Keep in mind that you can mix languages in Elements, so it is easy to
add new source files in, say, Oxygene or C# to your projects. And you can use Oxidizer to convert your Swift code to other languages, as well.

Regardless, the list below will be kept in sync withthis overview on swift.org using this little tool. (sorted by ID).
Review

SE-0406 Backpressure support for AsyncStream

SE-0405 String Initializers with Encoding Validation

SE-0403 Package Manager Mixed Language Target Support

SE-0395 Observation

SE-0288 Adding isPower(of:) to Binarylnteger — (SBL)

SE-0270 Add Collection Operations on Noncontiguous Elements —(SBL)
SE-0220-countiwhere:) — (done, .2633)

e © o o o o o

Accepted

SE-0404 Allow Protocols to be Nested in Non-Generic Contexts
i ish — (Not applicable)
SE-0386 New access modifier: package
SE-0383 Deprecate @UIApplicationMain and @NSApplicationMain
CE0378) ;

toerr — (Not applicable)

— (Not applicable)

it — (Not applicable)
— (Not applicable)
SE-0283 Tuples Conform to Equatable, Comparable, and Hashable — (SBL)
SE-0246 Generic Math(s) Functions — (SBL)

e © o 0o 0o 0 0 0 0 0 o o

Implemented for Swift 5.9

SE-0402 Generalize conformance macros as extension macros

SE-0401 Remove Actor Isolation Inference caused by Property Wrappers
SE-0400 Init Accessors

SE-0399 Tuple of value pack expansion

SE-0398 Allow Generic Types to Abstract Over Packs

SE-0397 Freestanding Declaration Macros

SE-0396 Conform Never to Codable

SE-0394 Package Manager Support for Custom Macros

SE-0393 Value and Type Parameter Packs

SE-0390 Noncopyable structs and enums

SE-0389 Attached Macros

SE-0388 Convenience Async[Throwing]Stream.makeStream methods — (SBL)
SE-0384 Importing Forward Declared Objective-C Interfaces and Protocols
SE-0382 Expression Macros

SE-0381 DiscardingtaskGroups — (Not applicable)

SE-0380 if and switch expressions

SE-0377 borrowing and consuming parameter ownership modifiers

SE-0374 Add sleep(for:) to Clock —(SBL)

SE-0366 consume operator to end the lifetime of a variable binding

®© o6 © 06 06 06 0 0 0 0 0 0 0 0 0 0 0 o o

Implemented for Swift 5.8

SE-0376 Function Back Deployment
SE-0375 Opening existential arguments to optional parameters
SE-0373 Lift all limitations on variables in result builders
i — (Not applicable)
SE-0370 Pointer Family Initialization Improvements and Better Buffer Slices —(SBL)
SE-0369 Add CustomDebugStringConvertible conformance to AnyKeyPath —(SBL)
SE-0368 StaticBigIint — (SBL)
SE-0367 Conditional compilation for attributes
SE-0365 Allow implicit self for weak self captures, after self is unwrapped
e62 - —(Not applicable)

e © o 0o 0 0 0 0 0 o o

Implemented for Swift 5.7

SE-0363 Unicode for String Processing — (SBL)
SE-0361 Fxtensions-en-bound-generictypes — (done)
SE-0360 Opaque result types with limited availability
SE-0358 Primary Associated Types in the Standard Library
SE-0357 Regex-powered string processing algorithms

i i — (Not applicable)
SE-0355 Regex Syntax and Run-time Construction
SE-0354 Regex Literals
SE-0353 Constrained Existential Types

e o o o o 0o o o o

SE-0352 Implicitly Opened Existentials

SE-0351 Regex-buitderBSE — (Not applicable)

SE-0350 Regex Type and Overview
SE-0349-Unalighed-Ltoadsand-SteresfromRaw-Memery — (Not applicable)

SE-0348 buildPartialBleck-forresult-builders — (Not applicable)

SE-0347 Type inference from default expressions

SE- 0346 L|ghtwe|ght same- type requ|rements for prlmary assoaated types

— (done, .2739)

SE- 0344 Dlstrlbuted Actor Runtime
SE-0343 Concurrency in Top-level Code
SE-0341 Opaque Parameter Declarations
SE-0340 Unavailable From Async Attribute

SE-8339-Medute-Aliasing For Disambiguation — (won't implement)
SE-0338 Clarify the Execution of Non-Actor-Isolated Async Functions —(E25616)
SE-0336 Distributed Actor Isolation — (E25616)
SE-0334 PeinterAPHdsability-tmprovements — (Not applicable)
Hh i — (Not applicable)
SE-0329 Clock, Instant, and Duration —(SBL)
SE-0328 Structural opaque result types — (E25620)
i — (won't implement)
SE-0309 Unlock existentials for all protocols
SE-0302 Sendable and @Sendable closures
SE-0292 Package-Registry-Service — (Not applicable)

Implemented for Swift 5.6

SE-0337 incremental-migrationto-concurrency-cheeking — (Not applicable)
SE-0335-Intreduce-existentiatany — (done, .2713)
waekage—MaﬁageFemﬁmaﬁeF%gms (Not appllcable)

— (Not applicable)
(Not appllcable)
SE-0324 Relax diagnostics for pointer arguments to C functions
SE-0322 Temporary uninitialized buffers
SE-0320 Allow coding of nonString / Int keyed Dictionary into a *KeyedContai...
SE-0315 Type placeholders (formerly, "Placeholder types")
— (Not applicable)

SE-0290 Unavailability Condition
Implemented for Swift 5.5.2

e SE-0323 Asynchronous Main Semantics
Implemented for Swift 5.5

SE-0319 Conform Never to Identifiable — (SBL)

SE-0317 async let bindings

SE-0316 Global actors

SE-0314 AsyncStream and AsyncThrowingStream — (SBL)
SE-0313 Improved control over actor isolation — (#85904)
SE-0311 Task Local Values

SE-0310 Effectful Read-only Properties — (#85999)
SE—G%O&#ﬁerestﬂHﬂembeFexpfeSﬁeﬁs—(done, 2631)

SE-0306 0306 Actors — (#85904)

SE-0304 Structured concurrency — (#85916)

SE-0300 Continuations for interfacing async tasks with synchronous code

SE-0299 Extending Static Member Lookup in Generic Contexts

SE-0298 Async/Await: Sequences — (#85914)

SE-0297 Concurrency Interoperability with Objective-C

SE-0296- it — (done, .2629)

SE-0295 Codable synthesis for enums with associated values

SE-0293 Extend Property Wrappers to Function and Closure Parameters —(#85915)
SE-0291 Package-Collections — (Not applicable)

— (Not applicable)

Implemented for Swift 5.4

— (Not applicable)

SE-0289 0289 Result bwlders — (#85014)

Implemented for Swift 5.3

SE-0286-Ferward-scan-matching-fortraiting-closures — (done)
SE-0285 Fase-the-transition-to-concise-magicfile strings— (done)
SE-0282 Clarify the Swift memory consistency model # —(#84618)
SE-0281 @main: Type-Based Program Entry Points — (#84619)
SE-0286 Frum-casesasprotecol-withesses — (Not applicable)
SE-0279-Muttiple Fratting-Closures — (done, .2531)

i — (Not applicable)
SE-0277 Floatl6é — (SBL)
SE-0276 Multi-Pattern Catch Clauses —(#83855)
SE-0272 Package-Manager-Binary-Dependeneies — (Not applicable)
SE-02/1 Package-ManagerResources — (Not applicable)

HabHi i tei i : ~ — (done, .2473)

SE-8268 Refine-didset-Semanties — (Not applicable)

SE-0267 where clauses on contextually generic declarations —(#83755)
SE-0266 Synthesized Comparable conformance for enum types — (#79250)
SE-0263 Add a String Initializer with Access to Uninitialized Storage —(SBL)

Implemented for Swift 5.2

e SE-0253 Callable values of user-defined nominal types —(#82278)
e SE-0249 Key Path Expressions as Functions — (#82280)

Implemented for Swift 5.1

o SE-0261-tdentifiable-Protocot — (done, .2433)

SE-0260-Hibrary Evelutionfor Stable ABls — (done)
SE-0258Property-Wappers — (done, .2629)
SE-0255-mplicitreturnasfrom-single-expression-funetions — (done)
SE-0254-Static-and-ctasssubseripts — (done)

SE-0252 Key Path Member Lookup — (#82279)

SE-0251 SIMD additions

SE-0248 String Gaps and Missing APIs —(SBL)

SE-0247 Contiguous Strings — (SBL)

SE-0245 Add an Array Initializer with Access to Uninitialized Storage —(SBL)
SE-0244-OpagueResuitTypes — (done)

SE-0240 Ordered Collection Diffing —(SBL)
SE-0068-FExpanding-SwiftSel-to-class-members-and-vatue-types — (done)

Implemented for Swift 5

— (done)

e o ©e 0o 0 0 0 0 0 0 0 0 o

SE-0241 Deprecate String Index Encoded Offsets — (SBL)
SE-0239 Add Codable conformance to Range types —(SBL)
SE-0238 Package-ManagerFarget-Specific Build-Settings— (Not applicable)
SE-0237 Introduce withContiguous{Mutable}StoragelfAvailable methods — (SBL)
SE-0236 Package-ManagerPlatform-DeploymentSettings — (Not applicable)
SE-6235-Add-Resutt-to-the-Standard-tibrary — (done, .2353)
SE-0234 Remove Sequence-SubSequence — (Not applicable)
SE-0233 Make Numeric Refine a new Add|t|veAr|thmet|c Protocol — (SBL)
‘scoliectionH-— — (Not applicable)
i ‘try? — (done, .2371)
SE-0229 SIMD Vectors — (#81921)
SE-0228 FhxExpressibleByStringinterpolation — (Not applicable)
SE-0227 Identity key path — (#81920)
SE-0225 Adding isMultiple to Binarylnteger — (SBL)
L ! i Hat — (done, .2371)
SE-0221 Character Properties — (SBL)
SE-0219 Package - ManagerBependency-Mirroring — (Not applicable)
SE-0218 Introduce compactMapValues to Dictionary — (SBL)
SE-0216 Introduce user-defined dynamically "callable" types — (#81924)
SE-0215 Conform-Neverto-Equatable-ant-Hashable — (won't implement)
SE-0234-Renaming-the Dictionarytiteral-type-to-keyVatuebairs — (Not applicable)
SE-0213 Literalinitialization—via-coereion — (won't implement)
SE-0211 Add Unicode Properties toUnicode.Scalar — (SBL)

SE-8192 Handlng Future Enum-Cases — (done, .2393)
Implemented for Swift 4.2

— (done, .2393)

® 6 06 06 o6 06 06 06 0 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o

SE-0212 CompierYersionBirective — (Not applicable)

SE- 0210 Add an offset(of:) method to MemoryLayout — (SBL)

— (Not applicable)
(Not applicable)

Mpaekagewmﬁagei'—syste%%ﬁ%gets
SE-0207 Add anallSatisfy algorithm to Sequence — (SBL)
SE-0206 Hashable Enhancements — (SBL)

SE-0205 withUnsafePointer(to:_:) and withUnsafeBytes(of:_:) for immutable value... —(SBL)
SE-0204 Add last(where:) and lastindex(where:) Methods — (SBL)

SE-0202 Random Unification — (SBL)

— (Not applicable)
SE-0199-Addingteggleto-Beot — (done, .2283)
SE-0197 Addmg in- pIace removeAll(where:) to the Standard Library —(SBL)

— (done, .2283)
SE-0195 Introduce User-defined "Dynamic Member Lookup" Types — (#79673)
SE—G—].-QA»DeﬁveeFGeHeeHeﬁﬂFEﬂuﬁreases— (done, .2333)
HHA ' — (done)

SE-0174 Change RangeReplaceableCollection.filter to return Self — (SBL)
SE-6343-Conditionat-conformances — (done)
SE-0079 Allow using optional binding to upgradeself from a weak to strong refere..
SE-0054-AbelishtmplieitiybnwrappedOptienal-type — (Not applicable)

®© o6 © 6 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0o

Implemented for Swift 4.1

— (Not applicable)
SE-0191 Eliminate IndexDistance from Collection — (SBL)
SE-8190 Fargetenvironmentplatferm—conditien — (done, .2233)
SE-8189Restrict-Cross-medute-Structtnitiatizers — (done)
SE-0188 Make Standard Library Index Types Hashable —(SBL)
SE- 0187 Introduce Sequence compactMap(:) —(SBL)

SE- 0185 Synthesmng Equatable and Hashable conformance — (#79250)

SE-0184 Unsafe[Mutable][Raw][Buffer]Pointer: add missing methods, adjust existing I... —(SBL)
SE-0157 Support recursive constraints on associated types — (#80045)
SE-0075-AddingaBuitd-ConfigurationtmpertFest — (done, .2307)

e © o 0o 0 0 0 0 0 o o

Implemented for Swift 4

e SE-0183 Substring performance affordances — (SBL)

o SE-6182-String-Newline-Escaping — (done, 9.2)

o SE-0181 Package ManagerC/c++Language Standard-Suppert — (Not applicable)
e SE-0180 String Index Overhaul — (SBL)

o SE-0379 Swiftrun-Command — (Not applicable)

SE-0178 Add unicodeScalars property to Character — (SBL)
SE-0176 Enforce Exclusive Access to Memory —(#79251)
— (Not applicable)
SE-0173 Add MutableCollection.swapAt(_:_:) — (SBL)
SE-031/2-One-sided-Ranges — (done)
SE-0171 Reduce with inout — (SBL)
SE- 0170 NSNumber bndgmg and Numerlc types
— (done, .2305)

SE-O-}GS»Muiﬁ-t'rne%tr'rngﬁems— (done, 9.2)
SE-0167 Swift Encoders — (#78130)
SE-0166 Swift Archival & Serialization — (#78130)

SE-0164Removefinal-supportin-protocolextensions — (done)

SE-0163 String Revision: Collection Conformance, C Interop, Transcoding —(SBL)
SE-8162 Package - ManagerCusteom-TargetLayouts — (Not applicable)

SE-0161 Smart KeyPaths: Better Key-Value Coding for Swift —(#79252)
SE-0166-Himiting-@ebje-tnference — (Not applicable)
SE-0158-Package-ManagerManifestAPHRedesign —

SE-0156 Class and Subtype existentials
SE-0154 Provide Custom Collections for Dictionary Keys and Values

SE-0150-Package-ManagerSupportforbranches — (Not applicable)

(Not applicable)

— (Not applicable)

SE-0348 Generie-Subseripts — (won't implement)
SE-0146 Package-ManagerProductDefinitions — (Not applicable)
SE-0142 Permit where clauses to constrain associated types —(#80051)
SE-0104 Protocol-oriented integers — (SBL)

Implemented for Swift 3.1

o SE-B152 Package-ManagerToolsVersion — (Not applicable)

o SE-0151 Package-ManagerSwiftLanguage-Compatibility-Version — (Not applicable)
e SE-0147 Move UnsafeMutablePointer.initialize(from:) to UnsafeMutableBufferPointer
o SE-0145 Package ManagerYersionPinning — (Not applicable)

e SE-0141 Availability by Swift version

o SE-0082 Package ManagerEditable Packages — (Not applicable)

e SE-0080 Failable Numeric Conversion Initializers — (SBL)

e SE-0045 Add prefix(while:) and drop(while:) to the stdlib —(SBL)

Implemented for Swift 3.0.1

e SE-0140 Warn when Optional converts to Any, and bridge Optional As Its Payloa...
e SE-0139 Bridge Numeric Types to NSNumber and Cocoa Structs toNSValue
e SE-0138 UnsafeRawBufferPointer

Implemented for Swift 3

SE-0155 Normalize Enum Case Representation — (#81923)

SE-0137 Avoiding Lock-In to Legacy Protocol Designs

SE- 0136 Memory layout of values

— (Not applicable)

SE 0133 Rename flatten() tO joined() — (SBL)
SE-0131 Add AnyHashable to the standard library —(SBL)
SE-0130 Replace repeating Character and UnicodeScalar forms of String.init —(SBL)
— (Not applicable)

SE-0128 Change failable UnicodeScalar initializers to failable —(SBL)
SE-03127 Cleaning-up-stalib-Peinterand BufferReutines — (Not applicable)
SE-03125- Remove -NenObjectiveCBase-and-isUniguelyReferenced — (Not applicable)
SE-0124 Int.init(Objectldentifier) and Ulnt.init(Objectldentifier) should have ... —(SBL)
SE-0121 Remove Optional Comparison Operators — (SBL)
SE-0120 Revise partition Method Signature — (SBL)
SE-0118 0118 Closure Parameter Names and Labels —(#75885)

g i ity— (done, 9.0)

i — (Not appllcable)
SE-0115 Rename Literal Syntax Protocols
SE-0114 Updating Buffer "Value" Names to "Header" Names — (SBL)
SE-0113 Add integral rounding functions to FloatingPoint —(SBL)
-SE-Q-].—l—}—FH‘theV&d—N—SEf—FBf—BHd@-Hg (won't |mp|ement)

— (done, 9.0)
SE-0109 Remove the Boolean protocol
SE-0107 UnsafeRawPointer APl — (SBL)
i i i — (done, 9.0)
SE-G-}G?:»Makeﬁnen-eseapmgﬂeswe&thedefau{t— (done, 9.0)
i i — (done, 9.0)
SE-0101 Reconflgurmg S|zeof and reIated functions mto a un|f|ed MemoryLayout — (SBL)

w{%estruettﬁmg%%dmeﬁelauses— (done, 9.0)

SE-0095 Replace protoco|<P1 P2> syntax with P1 & P2 syntax

: ib— (done, 8.3.95)
SE-0093 Adding a public base property to slices — (SBL)
SE-0092 Typeallases in protocols and protocol extensions
SE-009% — (done, .2307)
SE-0089 Renaming String.init<T>(_: T) — (SBL)
SE-0088 Modernize libdispatch for Swift 3 naming conventions
SE-8086 bropNSPrefixin-SwiftFoundatien — (done, 9.0)
SE-0085 Package-ManagerCommand-Names — (Not applicable)
SE-0081-Move-where-clatse-to-end-of-declaration — (done, 9.0)
SE-0077 Improved operator declarations — (#75872)
SE-0076 Add overrides taking an UnsafePointer source to non-destructive copying met... —(SBL)
SE-0072 Fully-eliminate-implicitbridging-conversionsfrom-Swift — (Not applicable)
SE-007-Alew{mestrkeywordsinmemberreferences — (done, 8.3.95)
SE-0670-Make-OptionalRequirements-Objective-C-enly — (Not applicable)
SE-0069 Mutability and Foundation Value Types —(SBL)

SE- 0067 Enhanced Floatlng Pomt Protocols —(SBL)

o ren parentheses— (done, 9.0)

-S-E-GGGS—A—NGW—MOG@I—F@FG%EG%HS—&M—H&HGGS (Not appllcable)

— (done, v10)
— (Not appI|cabIe)

SE-8063-SwiftPM-System-Medute-Search-Paths
SE- 0062 Referencmg Objectlve C key paths —(#75182)

— (done, v10)

— (Not applicable)

SE-GGS?—H%peFEmg—ebjeetwe-ethﬁwght—Geﬁeﬂes — (done)
SE%S%M&k&uHsafeﬁmﬂteFﬂtﬂIab#&w%e%usﬂeg@pheﬁal— (Not applicable)

— (Not applicable)
SE-0052 0052 Change IteratorType post n|| guarantee —(SBL)

— (done, 9.0)

— (done, 9.0)
—-.— (done, 9.0)

SE- 0044 Import as member —(#74959)
SE-0043 Declare-variablesin‘caseHabels-with-multiple patterns — (done)

SE-8039-MedernizingPlayground-Literals — (Not applicable)
SE-0038 Package Manager € -Language Target Suppert— (Not applicable)
SE-0037 Clarify-interaction-between-comments&operators— (done, 9.0)

— (done, 8.3.95)

— (done, 9.0)

— (done, 9.0)

SE-0033 Import Objectlve -C Constants as SWIft Types —(#74782)
SE-0032 Add first(where:) method to Sequence — (SBL)

— (done, 9 0)

— (Not applicable)

SE-0025-Scoped-Aceesstevel — (done, 9.0)
SE-8023-APH-Besign-Guidelines — (Not applicable)
SE-6619-Swift-Testing — (Not applicable)

SE-0016 Add initializers to Int and UInt to convert from UnsafePointer and UnsafeMu... ((SBL)
SE-0008 Add a Lazy fIatMap for Sequences of Optlonals # —(SBL)

— (Not applicable)

v — (done, 8.3.95)
SE-GG%AppwﬁécPI&HeIeImeﬁethe%tandardﬂHbrary (Not applicable)
SE-0005-BetterFranstation-of-Objective-C-APIsHate-Swift— (done, 9.0)
SE-0004-Remove-the++-and—operaters — (done, 8.3.95)

i i — (done, 9.0)
SE-0002 Removing currying func declaration syntax

Implemented for Swift 2.2

« SE-6028-Medernizing-Swift's-Debugging-tdentifiers — (done, 8.3.95)
e SE-0022 Referencing the Objective-C selector of a method

o SE-0021 Naming-Functions-with-Argument-tabels — (done, v10)

o SE-0020-Swifttanguage-Version-Buid-Configuration — (done, 8.3)
o SE-0615-Tuple-comparison-operators — (done, .2305)

¢ SE-0014 Constralnlng AnySequence |n|t — (SBL)

y er-associated ~ — (done, 8.3)
° —Mwﬁm%@yﬁﬁéﬁaﬁgtﬁeﬁ{—bbﬁs—(done, 8.3)
Implemented for 5.6
o SE-0383 Package ManagerExtensible Buitd-Tools — (Not applicable)

Deferred

Rejected

SE- 0256 Introduce {MutabIe}ContlguousCoIIechon protocol — (SBL)
SE-0231 Optional Iteration
SE-0222 0222 Lazy CompactMap Sequence —(SBL)

SE- 0203 Rename Sequence eIementsEquaI —(SBL)
SE- 0159 Fix Private Access LeveIs

SE- 0144 AIIow Slngle DoIIar Slgn as a VaI|d Identlfler

SE-0132 Rationalizing Sequence end-operation names

SE-0123 Disallow coercion to optionals in operator arguments

SE-0122 Use colons for subscript declarations

SE-0119 Remove access modifiers from extensions

SE-0108 Remove associated type inference

SE-0105 Removing Where Clauses from For-In Loops

SE-0098 Lowercase didSet and willSet for more consistent keyword casing
SE-0097 Normalizing naming for "negative" attributes

SE-0087 Rename lazy to @lazy

SE-0084 Allow trailing commas in parameter lists and tuples

SE-0083 Remove bridging conversion behavior from dynamic casts
SE-0074 Implementation of Binary Search functions

SE-0073 Marking closures as executing exactly once

SE-0058 Allow Swift types to provide custom Objective-C representations
SE- 0056 Allow tra|I|ng cIosures inguard condltlons

— (Not applicable)

SE-0041 Updatmg Protocol Naming Conventions for Conversions
SE-0027 Expose code unit initializers on String —(SBL)

SE-0026 Abstract classes and methods

SE-0024-Optional-Value Setter?22= — (done, 8.3)

SE-0013 Remove Partial Application of Non-Final Super Methods (Swift 2.2)

e SE-0012 Add @noescape to public library API
e SE-0010 Add StaticString.UnicodeScalarView — (SBL)
e SE-0009 Require self for accessing instance members

Returned

SE-B8385 Custem-Reflection-Metadata — (Not applicable)
SE-0371 Isolated synchronous deinit
SE-0359 Build-Time Constant Values
SE-8336-Conditionalsin-Colections — (done, .2713)

— (Not applicable)
SE-0312 Add indexed() and Collection conformances for enumerated() and “zip(_...
SE-0265 Offset-Based Access to Indices, Elements, and Slices —(SBL)
SE-0262 Demangle Function — (SBL)
SE-0259 Approximate Equality for Floating Point
SE-0257 Eliding commas from multiline expression lists —(#82859)
SE-0250 Swift Code Style Guidelines and Formatter
SE-0177 Add clamp(to:) to the stdlib —(SBL)
SE-0090 Remove .self and freely allow type references in expressions
SE-0078 Implement a rotate algorithm, equivalent to std::rotate() in C++
SE-0018 Flexible Memberwise Initialization

®© o 06 o6 0 0 0 0 0 0 0 0 0 o o

Withdrawn
e SE-0223 Accessing an Array's Uninitialized Buffer —(SBL)
e SE-0126 Refactor Metatypes, repurpose T.self and Mirror
e SE-0100 Add sequence-based initializers and merge methods to Dictionary —{(SBL)
e SE-0051 Conventionalizing stride semantics
e SE-0050 Decoupling Floating Point Strides from Generic Implementations
e SE-0030 Property Behaviors

Grand Rename

For Swift 3.0, Apple applied a great many changes to how Cocoa APIs appear to Swift.

Although we see RemObjects Swift as a "Swift for Cocoa" and have Swift (like the other Elements languages) be much more native to the Objective-C
runtime than Apple's Swift, we still wanted to make these renamed APIs available to RemObjects Swift users, as well.

We have done so as of Elements 9.0, in a way that we hope will be nice and intuitive.

The "Grand Rename", as Apple refers to it, consists of several separate aspects that contribute to new names and different APIs to appear to the Swift
language when working with Cocoa. The rename has no effect on RemObjects Swift on the other platforms (.NET, Java/Android and Island), as it only
affects the types imported from Objective-C.

Drop Ns Prefix from Foundation types.

For all types in Foundation, the NS prefix is being removed. NSString becomes just String (which of course always has been an alias in Elements),
NSMutableArray becomes MutableArray, NSindexPath becomes just IndexPath, and so on.

While for Apple's compiler, this is a breaking change, in Elements we decided to just make these types available undemoth names. So the NS*
versions will continue to work in your existing code, but you can start using the names w/o prefix when writing new code.

This change applies to all languages, so Oxygene and C# will see the new type names withoutNs prefix, too. For Swift, Code Completion will
default to only show (i.e. recommend) the new names, while for Oxygene, C# and our new Java Language front-end, CC will continue to recommend
the "real" Cocoa names, with NS prefix.

Note that this renaming only affects Foundation, and only theNs prefix. Other framework prefixes will remain; in particular AppKit classes on macOS
will continue to have NS prefixes, and - for example - UIKit classes on iOS will continue to haveul* prefixes, as in UlvView and so on.

e See (SE-0086) Drop NS Prefix in Swift Foundation.

Rename Methods and Omit Needless Words

In addition to renaming the core types in Foundation, Swift 3.0 also prescribes a thorough renaming of many Cocoa method (and property) names, to
make them less verbose and fit in better with Swift naming guidelines (see SE-0023).

This encompasses dropping redundant nouns and prepositions from method names, shortening them, and also converting parts of some method
names into first parameter prefixes.

For example

public static func bezierPathWithRect(_ rect: CGRect!) -> instancetype!
becomes:

public static func bezierPath(with rect: CGRect!) -> instancetype!

Note how the Rect noun has been dropped, because it is redundant with theCGRect type name, and howwith has been moved into the parenthesis, and
is now naming the first parameter.

This renaming follows rather complex rules outlined in SE-0005, and is applied toall Objective-C classes imported with FXGen, including the platform .fx
files we ship with Elements 9.0 and later, as well as any custom Objective-C libraries of frameworks you import yourself using the new version of the
tools.

This change applies only to the Swift language, while Oxygene, C# and Java continue to see members with their original Cocoa notations. For
backward compatibility, the original Cocoa names can also still be called from Swift, but they will no longer be offered by Code Completion, and new
Swift code should adopt the new names.

e See (SE-0005) Better Translation of Objective-C APIs Into Swift

Grand Central Dispatch (GCD, libDispatch)

The Grand Central Dispatch APIs, previously available via C-leveldispatch_ functions, have been wrapped in a new class structure that is more intuitive
to use from Swift. This is provided as wrapper classes in Swift Base Library, and the original C APIs continue to be available as well.

This new wrapper is available to all languages when referencing libSwift, but it is (currently) only available on the Cocoa platform (as is the
underlying GCD API).

e See (SE-0088) Modernize libdispatch for Swift 3 naming conventions

Not Implemented (yet)

The following renaming proposals are not implemented yet for Elements 9.0 and under review for a future update:

e (SE-0033) Import Objective-C Constants as Swift Types — #74782
o (SE-0044) Import as Member — #74959

Concepts
ARC vs. GC

One of the most significantdifferences in the Elements languages between .NET and Java on the one side and Cocoa on the other is the use of
Garbage Collection (GC) vs. Automatic Reference Counting (ARC) for the life cycle management of objects.

What is Life Cycle Management?

What is Life Cycle Management? Simply put, life cycle management is the feature of the language that keeps track of how long an object will stick
around ("be alive") in memory before it gets destroyed and its memory released to be used by other objects. Keeping track of this and efficiently
disposing of objects that are no longer needed is a crucial task, as memory is a precious resource (on some systems, such as mobile devices, more
than others), and if too many objects stick around longer than necessary, the application (and eventually the entire computing system) will run out of
memory to perform further operations.

The Olden Days

Before the introduction of modern object life cycle management, developers had to keep track of all objects they created, themselves, and make sure
to explicitly release them when done. This can lead to unnecessary plumbing code at best, and to hard-to-maintain class structures at worst.

In Delphi, for example, all created objects need to be freed by explicitly calling theirfree method. In many cases, this requires unnecessarytry/finally
blocks just to free local objects, and to think hard (and document well) about ownership of objects returned from methods or contained in the fields of
a class. In Objective-C, before the introduction of ARC, manual calls to retain and release were necessary to keep track of object ownership.

Both GC and ARC aim to take this burden from the developer, so that you no longer need to worry about tracking reference count, think about
ownership or, indeed, manually free objects as they become unused. Both techniques do it in a rather transparent way that works similar enough on a
language level that you just do not need to think about object life cycle management at all when writing day-to-day code.

What Keeps an Object Alive

Object life cycle management is really about keeping track of whether an object is still needed by the application. Both GC and ARC simply do this by
defining that an object is considered needed as long as there are references to it. Simply put: as long as some piece of code, any piece, is holding on
to the object (and thus potentially is able to perform tasks with the object), the object is still needed. Once this ceases to be the case, the object can
be released.

There are a few scenarios to consider:

e an object stored inside another object's field or property,
o local objects created within the current method (including those defined outside, but used inside an anonymous method),
* objects passed into or out of method and function calls,

as well as, of course, combinations of the three.

In any of these three scenarios, the compiler alongside GC or ARC will take care that the object in question is kept around as long as it is needed. For
example, if you store an object inside a field (or a property), that object will stick around, and the field will contain a valid reference to it until the field
is being overwritten with a different reference, or the object containing the field is freed itself. Similarly, if you declare a local variable inside a method
and assign an object to it, you can be sure that the referenced object will be around for as long as the variable is in scope.

Of course all of these rules combine, so if the same object is stored in both a field and a local variable, it cannot be considered for release until both
the field and the local variable have let go of the reference.

What this boils down to is that you can pretty much just take for granted that your objects stick around as long as you can access them, and that they
will automatically be freed once no part of your code is using them anymore. The implementation details for how this is achieved with GC vs. ARC vary
greatly though.

Garbage Collection

Garbage Collection (or GC for short) is the technique used for life cycle management on theNET and Java platforms. The way GC works is that the
runtime (either the Common Language Runtime for .NET or the Java Runtime) has infrastructure in place that detects unused objects and object
graphs in the background.

This happens at indeterminate intervals (either after a certain amount of time has passed, or when the runtime sees available memory getting low), so
objects are not necessarily released at the exact moment they are no longer used.

Advantages of Garbage Collection

e GC can clean up entire object graphs, including retain cycles.
e GC happens in the background, so less memory management work is done as part of the regular application flow.

Disadvantages of Garbage Collection

e Because GC happens in the background, the exact time frame for object releases is undetermined.
¢ When a GC happens, other threads in the application may be temporarily put on hold.

Automatic Reference Counting

Automatic Reference Counting (ARC for short) as used onCocoa takes a different approach. Rather than having the runtime look for and dispose of
unused objects in the background, the compiler will inject code into the executable that keeps track of object reference counts and will release objects
as necessary, automatically. In essence, if you were to disassemble an executable compiled with ARC, it would look (conceptually) as if the developer
spent a lot of time meticulously keeping track of object life cycles when writing the code — except that all that hard work was done by the compiler.

Advantages of Automatic Reference Counting

e Real-time, deterministic destruction of objects as they become unused.
¢ No background processing, which makes it more efficient on lower-power systems, such as mobile devices.

Disadvantages of Automatic Reference Counting

e Cannot cope with retain cycles.

Retain Cycles

A so-called retain cycle happens when two (or more) objects reference each other, essentially keeping each other alive even after all external
references to the objects have gone out of scope. The Garbage Collection works by looking at "reachable" objects, it can handle retain cycles fine, and
will discard entire object graphs that reference each other, if it detects no outside references exist.

Because Automatic Reference Counting works on a lower level and manages life cycles based on reference counts, it cannot handle retain cycles
automatically, and a retain cycle will cause objects to stay in memory, essentially causing the application to "leak" memory.

ARC provides a method to avoid retain cycles, but it does require some explicit thought and design by the developer. To achieve this, ARC introduces
Storage Modifiers that can be applied to object references (such as fields or properties) to specify how the reference will behave. By default,
references are strong, which means that they will behave as described above, and storing an object reference will force the object to stay alive until the
reference is removed. Alternatively, a reference can be marked as weak. In this case, the reference will not keep the object alive, instead, if allother
references to the stored object go away, the object will indeed be freed and the reference will automatically be set to nil.

A common scenario is to determine a well-defined parent/child or owner/owned relationship between two objects that would otherwise introduce a
retain cycle. The parent/owner will maintain a regular reference to the child, while the child or owned object will merely get a weak reference to the
parent. This way, the parent can control the (minimum) lifetime of the child, but when the parent object can be freed, the references from the children
won't keep it alive.

Of course the children or owned objects need to be implemented in a way that enables them to cope with the parent reference going nil (which would,
for example, happen if an external direct reference to the child kept it alive, while the parent is destroyed). It would be up to the developer to
determine how to handle such a scenario, depending on whether the child object is able to function without the parent or not.

The Storage Modifiers are only supported on Cocoa.

IDisposable & Finalizers

The .NET and Java frameworks provide the "Disposable" pattern that lets specific classes work around the non-deterministic deallocation of objects.

While for most classes deterministic deallocation is not crucial, there are some cases where it is, such as with classes that represent so-called
"unmanaged resources", i.e. resources outside of the scope of the garbage collector. For example, a class might contain an open exclusive file handle,
or a network connection. If such a class is no longer used, it is commonly desirable to have the unmanaged resource released immediately, e.g. have
the file closed and its handle released, or the network connection shut down.

Because we cannot rely on the exact time for when an object will be deallocated under GC, the Disposable pattern provides a well-defined interface
and method that can be called on an object to "dispose" it deterministically. Calling this method will not actually release the object (the GC will do
that, as it does for all objects), but it will give the object a chance to "clean up" after itself, release any unmanaged resources and (typically) set an
internal flag to indicate that it has been disposed.

e On .NET, the interface for this is called IDisposable, and the single method is calledDispose.
e On Java, the pattern uses the Closeable interface, with a close method to be called.

For both platforms, Elements provides a statement to work with an object and then have it closed/disposed as the block ends. (On Cocoa, the

statement works as a no-op, simply creating a local variable, and letting ARC collect the object at the end of the statement. This way, the syntax can

be used in a cross-platform fashion in all three editions.)

On both .NET and Cocoa, Finalizer methods defined with thefinalizer keyword (in replacement of method) can be provided to perform additional cleanup.
e On .NET, finalizers are a last resort, and should serve only as a backup in case the user of a class "forgot" to use the Disposable pattern and call

Dispose properly. They are costly to the garbage collector, and should not be declared on objects without sufficient reason.
e On Cocoa, finalizers are a regular part of an object's cleanup, and they will be called deterministically when the object is released.

Automatic Reference Counting

Automatic Reference Counting (ARC) is one of two memory and object lifetime management models used by the Elements compiler, next t&arbage
Collection (GC). It is used on the Cocoa platform.

Automatic Reference Counting manages object life cycles by keeping track of all valid references to an object with an internatetain count. Once all
references to an object go out of scope or are cleared, and the retain count thus reaches zero, the object and its underlying memory is automatically
freed.

In essence, ARC (as well as GC) alleviates the developer of the burden of manually keeping track of object ownership, eliminating explicit calls to "free"
or "destroy" methods or so-called destructors.

Cocoa Only

ARC is used on the Cocoa platform only. The .NET and Java platforms useGarbage Collection, as doeslsland except when using Cocoa or Swift objects.

Retain Cycles

While ARC provides a more deterministic destruction of objects than GC, one downside of ARC is that it cannot automatically handI®etain Cycles, that
is cyclic references between two or more objects that "keep each other alive". The concepts of Storage Modifiers and object references has been
introduced to compensate for that.

Auto-Release Pools

Under the hood, ARC uses the concept of so-calledAuto-Release Pools to help manage the life cycle of unowned objects returned from functions. In
most cases, auto-release pools are created for you by the Cocoa runtime, as it calls into your application. However, Elements does provide a syntax for
explicitly creating auto-release pools, should you need them, via the do keyword combination.

Method Naming Rules

Cocoa uses special naming rules to determine if the result of a called method is returned "owned" (i.e. needs to be released by ARC when it goes out of
scope) or unowned (i.e. needs to be retained by ARC if it is held onto beyond the current scope in a reference). Since ARC takes care of all of this, in
general the developer no longer needs to be aware of these naming conventions much — however, care must be taken when naming new methods.

The following method name prefixes are known by ARC to return retained objects. In general, you should avoid implementing methods with these
names, except when overriding methods from NSObject or implementing Constructors and "init*" Methods. If you must declare methods that break these
conventions, the [ReturnsNotRetained] special attribute can be applied to the method to indicate that despite the name, it returns an unretained object.

init*, alloc*, copy*, mutableCopy* and new* return owned objects by default, i.e. have[ReturnsRetained] implied.

Conversely, the [ReturnsRetained] special attribute can be used to indicate a method that returns an owned object, in spite ohot using the above
naming.

The compiler will automatically adjust the ARC code generated inside methods adorned with these attributes, so that the reference count of the

returned object is as expected. E.g. in a method marked with [ReturnsRetained], ARC will ensure that the result value is not released or placed in the
autorelease pool.

Comparing GC and ARC

You can find a more detailed comparison of GC and ARC, and how the differences affect the Elements code you write, in theAutomatic Reference
Counting vs. Garbage Collection topic.

Elements' ARC Compared to Objective-C

In essence, Elements's ARC implementation works identical to that provided by the Objective-C language in the Clang-LLVM compiler; as a matter of
fact, it uses the same underlying runtime mechanisms.

One item worth noting is that in contrast to Objective-C's default, Elements considers local variables to go out of scope at the end of the block that
defined them (i.e. usually at the end of the method, or at the end of a nested/pair). By contrast, Objective-C will release the references stored in local
directly after the last time that variable is accessed, which can lead to some unexpected crashes when working with child objects or bridged objects.

In Objective-C, the _ attribute_ ((objc_precice_lifetime)) attribute can be used to change this behavior; Elements behaves as if this attribute was defined, by
default. You could say that Elements errs on the side of caution and more well-defined object lifetimes.

Garbage Collection

Garbage Collection (GC) is one of two memory and object lifetime management models used by the Elements compiler, next té\utomatic Reference
Counting (ARC). It is used on the.NET and Java platforms.

Garbage Collection manages object life cycles by having the managed infrastructure provided by the Common Language Runtime (on .NET and Mono)
and Java Runtime Environment (on Java) keep track of when objects are no longer referenced by any part of your code, so that the underlying memory
and resources can automatically be freed when they are no longer needed.

In essence, GC (as well as ARC) alleviates the developer of the burden of manually keeping track of object ownership, eliminating explicit calls to "free"
or "destroy" methods or so-called destructors.

Only objects that represent so-called "unmanaged resources", such as file handles, network sockets or the like, might need special consideration to be
deterministically disposed of — which can be accomplished using the Dispose Pattern.

.NET, Java and Island Only
GC is used on.NET, Java and Island. The Cocoa platform uses Automatic Reference Counting.
Comparing GC and ARC

You can find a more detailed comparison of GC and ARC and how the differences affect the Oxygene code you write in theAutomatic Reference
Counting vs. Garbage Collection topic.

Attributes and Aspects

Elements provides full support for Aspects and Attributes on all platforms, and support for a select number of compiler-definedAspects. In addition,
Elements allows the compiler itself to be extended by Creating Custom Aspects, which essentially are more sophisticated attributes that can control
the compiler's behavior.

An aspect, or attribute, is atag that can be applied to certain code elements (for example classes or methods) or the entire executable, to provide
additional information that is not part of the core code. The function of aspects can vary widely, from actually affecting the compiler's behavior to
merely attaching a piece of information to a code element that can be queried for at runtime using Reflection.

On .NET, Island and Java, attributes are types that descend fromSystem.Attribute (.NET and Island) or implement thejava.lang.annotation.Annotation
interface (Java), respectively. On Cocoa, all attributes arecompiler-defined, and custom attributes are not supported.

Cirrus is an extension of the standard attribute syntax and concept that allows for the creation of even more flexible Aspects that can influence how
the compiler handles the annotated code. Cirrus aspects are supported for all platforms, but are alwaysimplemented in .NET.

Example

For example, the Conditional attribute (defined by the .NET runtime, and provided by the Elements compiler for Cocoa and Java) causes the compiler to
omit any calls to the methods it is attached to, unless the passed conditional define (in this case "DEBUG") is defined.

type
DebugHelper = public class

public

[Conditional('DEBUG")]

class method DebugOutput(aData: String);
end;

public class DebugHelper

{
[Conditional("DEBUG")]
public static void DebugOutput(string data) {

}
}

public class DebugHelper {
@Conditional("DEBUG")
public static func DebugOutput(string data) {

L
}

public class DebugHelper {
@Conditional("DEBUG")
public static void DebugOutput(string data) {

-
}

Public Class DebugHelper
<Conditional("DEBUG")> _
Public Static Sub DebugOutput(data As string)

End Sub
End Class

In this example, other parts of code might contain calls toDebugHelper.DebugOutput(). These calls will turn into no-ops and not be compiled into the final
executable, unless the DEBUG define is set.

See Also

o Predefined Aspects and Attributes

Creating Aspects (Cirrus)

Cirrus is an infrastructure for Aspect-Oriented Programming (AOP) using the Elements compiler, available in all languages except Go.

Cirrus extends the attributes system with full support for Aspect-Oriented Programming, Like regular attributes, aspects annotate a class or one of it's
members. But wile plain attributes can only affect build-in compiler changes (for a few well-defined ones) or leave static meta-data that can be
inspected at runtime by Reflecrtion, Aspects can take anactive role in then compile process, allowing your own code to run and adjust the emitted
binary as you need.

Separation of Concerns

This is great for allowing you to separate concerns such as logging, security or other functionality orthogonal to the regular class hierarchy into
Aspects that can be attached to classes or their members, as needed.

Functionality that otherwise would need to be reimplemented in various places across an application or framework can be encapsulated in reusable
form and maintained in a single place. Elements allows developers both to reuse existing aspects written by third parties or included with the
compiler’s standard aspect library, as well as to create their own aspects.

Aspects can only be implemented using the .NET platform (using any of the OOP languages in Elements). They can then beapplied to code for any
of the four platforms, .NET, Cocoa, Java and Island.

Aspects can be applied in all languages except Go, using the same syntax as for regular attributes. On Oxygene and C# this is done by enclosing the
aspect name in square brackets ([SomeAspect]), in Swift and Java by prefixing it with an "at" symbol @SomeAspect), and in Mercury using angle brackets
(<SomeAspect>).

See Also

Getting Started with Cirrus
Cirrus APl Overview

L]

L]

e Cirrus API Reference
e Predefined Aspects

Getting started with Cirrus

Elements' AOP systen, Cirrus, makes it possible to change the behavior of code, add or remove fields, properties, events or methods and even extra
classes, by applying special kinds of attributes - Aspects - to classes or members.

Aspects are written in Elements itself, compiled into a separate library, and are reusable by different projects. They are fairly simple to write. Aspects

can be created using any of the Object Oriented Elements languages, using .NET, and can used from Oxygene, C#, Swift, Java and Mercury, onall
target platforms.

Aspects Get Implemented in .NET Only

While aspects can beused on all three platfroms, but they can be onlyimplemented using .NET.

the Cirrus core library is build on.NET Standard 2.0, so that it can be used both with Classic .NET and .NET Core. Aspects must be compiled for Classic
.NET (because that is what the compiler runs on), version 4.8 (not lower) or .NET Standard 2.0 (not higher).

Writing an Aspect

To write an aspect, simply create a new .NET (Classic) Class Library and set its Target Framework to 4.8, or a new .NET Standard Class Library and set

its Target Framework to 2.0. Then add a reference the RemObjects.Elements.Cirrus library shipping with Elements, via the regular Add Reference dialog.
Finally add a new class descending from System.Attribute, and optionally the regularAttributeUsage() attribute to denote where it can be applied. The only
difference from a regular attribute is that aspects implement one of the special interfaces defined by Cirrus, such as IMethodimplementationDecorator, as in
the sample below.

Aspect attributes are loaded and instantiated by the compiler atcompile time, and are given the chance to take very powerful influence on the code
the compiler is generating.

In the example below, we are creating an aspect to decoratemethods of the class it is applied to. This is done through the
IMethodimplementationDecorator interface, which requires one single method, HandlelImplementation to be implemented by the aspect. The compiler will call
this method after a method body (implementation) was generated and allows the aspect to take influence on the generated code and to change or
augment it:

namespace MyAspectLibrary;
interface

uses
RemObjects.Elements.Cirrus;

type
[AttributeUsage(AttributeTargets.Class or AttributeTargets.Struct)]
LogToMethodAttribute = public class(System.Attribute, IMethodimplementationDecorator)
public
[AutolnjectintoTarget]
class method LogMessage(aEnter: Boolean; aName: String; Args: Array of object);

method Handlelmplementation(Services: I1Services; aMethod: IMethodDefinition);
end;

implementation

class method LogToMethodAttribute.LogMessage(aEnter: Boolean; aName: String;
Args: Array of object);
begin
if aEnter then
Console.WriteLine('Entering ' + aName)
else
Console.WriteLine('Exiting ' + aName);
end;

method LogToMethodAttribute.Handlelmplementation(Services: IServices;
aMethod: IMethodDefinition);

begin
if String.Equals(aMethod.Name, 'LogMessage’, StringComparison.OrdinallgnoreCase) then exit;
if String.Equals(aMethod.Name, '.ctor', StringComparison.OrdinallgnoreCase) then exit;

aMethod.SetBody(Services,
method begin
LogMessage(true, Aspects.MethodName, Aspects.GetParameters);
try
Aspects.OriginalBody;
finally
LogMessage(false, Aspects.MethodName, Aspects.GetParameters);
end;
end);
end;

end.

using RemObjects.Elements.Cirrus;
namespace MyAspectLibrary

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class LogToMethodAttribute: System.Attribute, IMethodimplementationDecorator
{

[AutolnjectintoTarget]

public static void LogMessage(bool aEnter, String aName, object[] Args)

if (aEnter)
Console.WriteLine("Entering " + aName);
else
Console.WriteLine("Exiting " + aName);
}

public void HandlelImplementation(IServices Services, IMethodDefinition aMethod)

if (String.Equals(aMethod.Name, "LogMessage", StringComparison.OrdinallgnoreCase)) return;
if (String.Equals(aMethod.Name, ".ctor", StringComparison.OrdinallgnoreCase)) return;

aMethod.SetBody(Services, (services, meth) => {
LogMessage(true, Aspects.MethodName(), Aspects.GetParameters());
try
{
Aspects.OriginalBody();
}
finally
{
LogMessage(false, Aspects.MethodName(), Aspects.GetParameters());

}
1)
}
}
}

import RemObjects.Elements.Cirrus

@AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)
public class LogToMethodAttribute : System.Attribute, IMethodimplementationDecorator
{

@AutolnjectintoTarget

public static func LogMessage(_ aEnter: Bool, _ aName: String,

{

aArgs: object[])

if (aEnter) {
Console.WriteLine("Entering " + aName)
} else {
Console.WriteLine("Exiting " + aName)
}
}

public func Handlelmplementation(_ Services: IServices, _ aMethod: IMethodDefinition)

if String.Equals(aMethod.Name, "LogMessage", StringComparison.OrdinallgnoreCase) {
return

}

if String.Equals(aMethod.Name, ".ctor", StringComparison.OrdinallgnoreCase) {
return

}
aMethod.SetBody(Services) { (services, meth) in

LogMessage(true, Aspects.MethodName(), Aspects.GetParameters())
defer {

LogMessage(false, Aspects.MethodName(), Aspects.GetParameters())
}

do {
Aspects.OriginalBody()
}
}
}
}

package MyAspectLibrary;
import RemObjects.Elements.Cirrus.*;

@AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)
public class LogToMethodAttribute extends System.Attribute implements IMethodimplementationDecorator

{
@AutolnjectintoTarget
public static void LogMessage(bool aEnter, String aName, object[] Args)
if (aEnter)
Console.WriteLine("Entering " + aName);
else
Console.WriteLine("Exiting " + aName);
}
public void Handlelmplementation(IServices Services, IMethodDefinition aMethod)
{
if (String.Equals(aMethod.Name, "LogMessage", StringComparison.OrdinallgnoreCase)) return;
if (String.Equals(aMethod.Name, ".ctor", StringComparison.OrdinallgnoreCase)) return;
aMethod.SetBody(Services, (services, meth) => {
LogMessage(true, Aspects.MethodName(), Aspects.GetParameters());
try
{
Aspects.OriginalBody();
}
finally
{
LogMessage(false, Aspects.MethodName(), Aspects.GetParameters());
}
I3k
}
}

Imports RemObjects.Elements.Cirrus

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Struct)>
Public Class LogToMethodAttribute

Inherits System.Attribute

Implements IMethodlmplementationDecorator

<AutolnjectintoTarget>
Public Shared Sub LogMessage(aEnter As Boolean, aName As [String], Args As Object())
If aEnter Then
Console.WriteLine("Entering " + aName)
Else
Console.WriteLine("Exiting " + aName)
End If
End Sub

Public Sub Handlelmplementation(Services As IServices, aMethod As IMethodDefinition)
If String.Equals(aMethod.Name, "LogMessage", StringComparison.OrdinallgnoreCase) Then
Return
End If
If String.Equals(aMethod.Name, ".ctor", StringComparison.OrdinallgnoreCase) Then
Return
End If
aMethod.SetBody(Services, Sub(aServices2, meth)
LogMessage(true, Aspects.MethodName(), Aspects.GetParameters())
Try
Aspects.OriginalBody()
Finally
LogMessage(false, Aspects.MethodName(), Aspects.GetParameters())
End Try
End Sub)
End Sub

End Class

In the code fragment above, our aspect compares the method name to ".ctor" and "LogMessage" (we do not want to augment those), and if they do
not match, it adds LogMessage calls around the original method, protected by a try/finally.

The Aspects class is a special Compiler Magic Class provided by Cirrus that allows the aspect to take control of the code it is being applied to. Among
other things, you see that it can query for the method name and the parameters, but also the body of the method in question, as written in the original

source for the class.

By calling SetBody() on the method, the aspect can replace the body of the generated code (in this case, by taking the original body and surrounding
our calls to LogMessage). Note how the new method body is being provided as plain, readable Oxygene code, in form of an extension to the anonymous
method syntax.

It is also worth noting that theLogMessage method of our aspect has an aspect of its own applied. TheAutolnjectintoTarget Aspect is defined by Cirrus
itself, and it's intended for use within aspects only. It causes the member (in this case theLogMessage method) to be added to the class the aspect is
applied to.

This is necessary since our aspect makes use ofLogMessage() in the new and augmented method body - but no such method is likely to exist in the
target object. Without AutolnjectintoClass, all the logic forLogMessage would need to be crammed into the SetBody call - making it potentially harder to
read, but also potentially duplicating a lot of code and logic.

The following application makes use of our Log aspect. Note how this can be done in both Oxygene and RemObjects C#.
namespace CirrusTest;
interface

uses
MyAspectLibrary,
System.Ling;

type
[aspect:LogToMethod]
ConsoleApp = class
public
class method Main;
class method Test(S: string);
end;

implementation

class method ConsoleApp.Main;
begin
Console.WriteLine('Hello World.');
Test('Input for Test');
end;

class method ConsoleApp.Test(S: string);
begin

Console.WriteLine('TEST: '+s);
end;

end.

using MyAspectLibrary;
using System.Ling;

namespace CirrusTest

{

[__aspect:LogToMethod]
public class ConsoleApp

public static void Main()

{
Console.WriteLine('Hello World.");
Test('Input for Test');

}

public static void Test(string S)

Console.WriteLine('TEST: '+s);
}
}

}
Imports MyAspectLibrary

<LogToMethod>
Public Class ConsoleApp

Public Shared Sub Main()
Console.WriteLine(Null)
Test(Null)

End Sub

Public Shared Sub Test(S As String)
Console.WriteLine(Null)
End Sub

End Class

We simply created a new console app that references the aspect library we created above, as well as the Cirrus library.

*Note': Because aspects are applied at compile time, the final executable willnot depend on the aspect library or on Cirrus anymore.

This is also what enabled Aspects - although written in .NET - to be used in projects formany platform.

Running and debugging this program will output a log message at the beginning and end of each method, just as specified in our designed aspect.
Entering Main

Hello World.

Entering Test

TEST: Input for Test

Exiting Test

Exiting Main

When this code is run, the LogMessage method has been injected into our class, and the binary will nit reference or requireRemObjects.Elements.Cirrus.dll

or our aspect .dll to run.

APl Overview

Cirrus is a small .NET library with interfaces and classes that can be used to build and adjust the code model in the compiler. There are two ways to
use Cirrus, through an aspect attribute or a method override.

.NET Only

While aspects can beused on all three platfroms, but they can be onlyimplemented using .NET.

Aspect attributes

Aspect attributes are plain .NET attributes that implement 1 or more of the cirrus interfaces. These attributes are placed in a regular .NET class library.

Interface Description

Interface to be implemented by any aspect that wants to influence the signature of a type, modify the ancestry or

IypelnterfaceDecorator
ITypelnterfaceDecorator add members

IEventinterfaceDecorator Interface to be implemented by any aspect that wants to influence the interface of an event.
IPropertylnterfaceDecorator Interface to be implemented by any aspect that wants to influence the interface of a property.
IMethodlInterfaceDecorator Interface to be implemented by any aspneect that wants to influence the interface of a method.
IFieldInterfaceDecorator Interface to be implemented by any aspect that wants to influence any fields defined in a class

IEventimplementationDecorator Interface to be implemented by any aspect that wants to influence the implementation of an event.
ITypelmplementationDecorator Interface to be implemented by any aspect that wants to influence the implementation of a type.
IPropertylmplementationDecorator Interface to be implemented by any aspect that wants to influence the implementation of a property.
IMethodIimplementationDecorator Interface to be implemented by any aspect that wants to influence the implementation of a method.

All the *InterfaceDecorator interface will be called early on, before any method bodies are resolved or generated. The *ImplementationDecorator
interfaces are called after the body of that member was generated and processed. An aspect can implement multiple interfaces and if an aspect
applied to a type implements one of the member interfaces will apply to all relevant membes of the call too.

The aspects all have a method with a services parameter that can be used to emit messages, find or create types and even add references to the
project. The other parameter is a reference to the member this aspect is applied to.

Using aspect attributes

First in the project that will use the aspect add a "Cirrus Reference" to the aspect library. To use these aspects an aspect: (Oxygene) or __aspect:
(RemObjects C#) prefix is used in the attribute. These aspects will not be compiled into the target executable.

Method aspects

Method aspects are aspects that get triggered when a call to a specific method is done, this aspect lets you replace the call with something else.
Method aspects can be defined by applying MethodAspectAttribute to a class that implements IMethodCallDecorator. The constructor has several
overloads that can be used to narrow down the method(s) to apply the aspect to, the method in this interface then gets called for each such method.
Just referencing an aspect library with method aspects activates them. Method aspects get a context parameter that contains the services, the current
type and method, a parameter with the method that was called and a parameter with the parameters to this call.

e Cirrus APl Reference

Special Attributes

In addition to regular Custom Attributes, the Elements compiler provides support for the special platfrom-specific attributes that cana affect its
behavior:

e Special Attributes for .NET
o Special Attributes for Java

o Special Attributes for Cocoa
e Special Attributes for Island

See Also

e Predefined Aspects and Attributes

.NET

In addition to normal Custom Attributes and Predefined Aspects and Attributes provided by the compiler, the Elements compiler provides support for
the special, attribute classes defined by the .NET Framework itself. In many cases, these attributes result in specific code or data to be generated in
the executable, or in changed the compiler behavior.

.NET Only

These attributes or aspects are available for the .NET platform only.

AssemblyKeyFile, AssemblyKeyName, AssemblyDelaySign

These attributes control strong-naming and signing of the assembly, as required for installation in the Global Assembly Cache (GAC).
AssemblyVersionAttribute, AssemblyFileVersionAttribute

These two attributes specify the version numbering of the output assembly.

If AssemblyFileVersionAttribute is not specified, the AssemblyVersionAttribute value is used for both the string name and the Win32 file version. If it is
specified, the AssemblyFileVersion will be for the Win32 version resource and the AssemblyVersion will go into the strong name.

AssemblyCompany, AssemblyProduct, AssemblyCopyright, AssemblyTrademarkAttribute, AssemblyCulture,
AssemblyDescription

These attributes contribute additional fields to the assembly strong name and or version information.
Out

Used to mark out params. The .NET runtime passesout parameters by passing them as "by reference" (similar to thevar or ref keyword) and setting the
Out attribute on the parameter.

Comimport, In, Optional, MarshalAs, NonSerializable, Serializable, PreserveSig
These are not real custom attributes, but represent flags in the IL. Oxygene knows about these and correctly maps them to the underlying flags.
Dilimport
Dllimport is used to import functions from unmanaged dlls (such as Win32 dlIs or shared objects and dylibs on Linux or Mac, with Mono. A static
method header can be defined in a class, and the Dllimport attribute can be added to specify what dll and what function to import (and possibly more
details on how to marshal parameters back and forth) and calls to this method will be directed to the external Win32 dll.

e See Dllimport for more information.
Conditional
This attribute is used to mark types or members for conditional compilation.

The compiler will link calls to members with this attribute only if the matching define is set. For example, most methods in
RemObjects.DebugServer.dll have the [Conditional("DEBUG")] attribute. This means that if you write code referencing this assembly and use those
methods, the actual calls will only be generated if the "DEBUG" define is set for the project or via \$IFDEF.

The nice thing about ConditionalAttribute is that it not only works within the same assembly as traditional IFDEFs, but also across assembly

boundaries. The DebugServer assembly, for example, is written in C# and completely outside of the control of the Oxygene compiler - yet the
Oxygene-written code will behave differently depending on what defines it is compiled with.

e See Conditional for more information.

Obsolete

This attribute marks types or members (or entire assemblies) as obsolete. When the compiler notices that you are using an item marked with this
attribute, it will generate the appropriate warning or error (depending on the parameters supplied to the attribute).

e See Obsolete for more information.
StructLayout/FieldOffset
e See Records for modifying record storage layouts.
Guid
The compiler will enforce proper GUID format for string constants used with the GuidAttribute.
Debuggable

The compiler will emit this assembly level attribute automatically when compiling, however, when it's present, the compiler will use the one defined in
code.

Methodimpl

An attribute that changes the flags of a MethodDef in the metadata. Used for ComIimport and internal calls. Generally these shouldn't be used as they
might create invalid code, depending on the combination of flags.

Security Attributes
Oxygene provides full support for understanding security attributes and generating the appropriate XML structures inside the output assembly.
CoClass

This attribute is used in COM imports to define what class is a co-class for the interface this is applied to. When it is defined, theew operator will work
on interfaces and it will instantiate the proper co-class.

CLSCompliant

This attribute is used to define whether a type or member is compliant with the Common Language Specification (CLS).
UnmanagedExport & NativeExport

This is a special attribute that can be used to export a class method as an unmanaged dll export entry.

See Unmanaged Exports

CallerFilePath, CallerMemberName, CallerLineNumber

When applied to a parameter (with a default set) the compiler will insert the filename, member name or line number of the caller. Useful for logging
purposes:

public static void Test([CallerMemberName] string mn = "",
[CallerFilePath] string fp = "",
[CallerLineNumber] int In = 0)

{

Console.WriteLine("member name: " + mn);
Console.WriteLine("file path: " + fp);
Console.WriteLine("line number: " + In);

}
Test(); // will emit the name, filename and line number of the current location.

See Also

e Predefined Aspects and Attributes

Cocoa

In addition to normal Custom Attributes, some of the Predefined Aspects and Attributes provided by the compiler are of specific relevance for the
Cocoa platform in particular:

Cocoa Only

These attributes or aspects are available for the Cocoa platform only.

e ReturnsRetained, ReturnsUnretained
e |BObject, IBOutlet, IBAction

e LinkOnce

e FunctionPointer, BlockPointer

e Union

e Packed

L]

DynamicProperty
See Also

o Predefined Aspects and Attributes

Java

In addition to normal Custom Attributes and Predefined Aspects and Attributes provided by the compiler, the Elements compiler provides support for
the special, attribute classes defined by the Java libraries themselves. In many cases, these attributes result in specific code or data to be generated in
the executable, or in changed the compiler behavior.

Java Only

These attributes or aspects are available for the Java/Android platform only.

Retention

Defines if something should be written to the .class/jar and exposed to the runtime (seeRetention) for more information
See Also

o Predefined Aspects and Attributes

Island

In addition to normal Custom Attributes and Predefined Aspects and Attributes provided by the compiler, the Elements compiler provides support for
the special, attribute classes defined by the low-level Island RTL. In many cases, these attributes result in specific code or data to be generated in the
executable, or in changed the compiler behavior.

Island Only

These attributes or aspects are available for thelsland platform only. They're defined in thelsland RTL.

VersionResource

Windows only: Defines the parameters for the PE version resource. Assembly level attribute, has these properties which are the direct equivalent to
their version property.

property Copyright: String
property Description: String
property FileVersion: String
property CompanyName: String
property ProductName: String
property LegalTrademarks: String
property Title: String

property Version: String

StaticAddress

For low level targets, this places a static field to be equivalent to a memory address, when reading from it or writing to it, it will directly write to that
memory address. Takes 1 IntPtr parameter containing the memory address.

InlineAsm
When defined on an external method, its body becomes a pure inline asm function. This attribute takes 4 parameters: asm containing the AT&T style
asm. Constraints containing a clang compatible constraints string. SideEffects boolean to define if the asm block has side effects and align if it needs to

be aligned.

CallingConvention

For i386 only, ignored on all other CPU types. Overrides the calling convention, takes 1 parameter of type CallingConvention and can be Default,
FastCall, Stdcall or Cdecl.

e See CallingConvention for more information.
SymbolName
Overrides the name of a method or static field, takes a string parameter. By default Island uses name mangling to ensure methods don't have the
same name, with this attribute a custom name can be provided. Useful for interop with other languages. Note that the compiler still applies some rules
like adding an underscore before it, or adding @number after it for stdcall on Windows, these rules can be overriden by prefixing the symbol name
with ascii character 1 (SymbolName(#1'MySymbol')).
e See SymbolName for more information.
DisableOptimizations
When applied to a method all optimizations in that function are disabled, even if the project is optimized.
Disablelnlining
When applied to a method, this won't be inlined by the optimizer.
InReg
i386 only, ignored elsewhere. Can be set on a method, in which case its first parameter will pass via EAX instead of on the stack.
ThreadLocal
Can be set on a static field, when set this field will have its own copy for every thread instead of being a static.
SectionName
Overrides the PE/ELF section a method or field will be defined in. Takes a string parameter containing the new section name.
NoReturn

Marks a method as not returning for optimization purposes.

o See NoReturn for more information.
Weak

Marks a method or field as weak. When the linker encounters weak symbols it will merge them instead of fail, and a non weak version will take
prescendence over a weak one.

LinkOnce

Like Weak, but linkonce symbols can be discarded if they are not referenced.

e See LinkOnce for more information.
Used

Can be applied to a type, method or static field and forces the compiler to link this symbol in, even if it's not referenced.

e See Used for more information.
Naked
When set on a method no prologue/epilogue, like a stackframe will be emitted for this method. Generally only combined with asm.
Dllimport

For all platforms, imports a symbol from the given dynamic library. Takes a dliname as a parameter. Optionally an EntryPoint named argument can be
set to define which symbol to look for.

e See Dllimport for more information.
DIIExport

For all platforms, exports a method, static field or type from the given dynamic library. This can also be set globally by setting the ExportAllTypes
option. When used on methods or fields, the SymbolName attribute can be used to override the name which it gets exported with.

e See DIlExport for more information.
Union

Changes a struct to work like a union, all fields are located at offset 0 and overlap eachother. The size of the struct is the size of the largest field.

e See Union for more information.

Packed

Changes the packing of the struct from the platform default to byte aligned.

e See Packed for more information.

See Also

o Predefined Aspects and Attributes

Blocks

A block (or delegate in .NET parlance) is a method pointer type with optional scope. Blocks are a safe way to dynamically invoke methods with a
specific signature on unrelated classes and Anonymous Methods.

On .NET, block types are often used in combination withevents, where the event provides a simple way to add and remove event handlers (in the form
of blocks) that can then be called back. Blocks can also be used in combination with Anonymous Methods in methods that accept callbacks.

On Cocoa, blocks are often used as callbacks and completion handlers, for example in APIs such asGrand Central Dispatch.

On Java, blocks are supported, but not commonly used in platform APIs.

A block instance can be thought of as a method implementation (which could be derived from an actual method or an anonymous method declared
inline) tied to a specific object instance, which has (in the case of Anonymous Methods optional) access to variables "captured" from the scope

surrounding the anonymous method. (See the topic on Anonymous Method for more details on this.) As such, a block is much more than a mere
function pointer.

Defining Custom Block Types

Defining a block can be done with theblock keyword in Oxygene and the delegate keyword in C#. In Swift the -> operator is used.

In Oxygene, the function, procedure or method keyword can also be used, although that is frowned upon, and they will provide different behavior on the
Cocoa platform to define C function pointers instead of true Cocoa blocks.

On .NET, it is common forevents to use block types with a similar signature, where the first parameter is the "sender"of typeObject, and the second
one is an EventArgs or a descendant of that class. This is not a technical requirement, but mainly a common code pattern seen throughout theNET
Framework Class Library and Third Party Libraries. See the Events topic for more discussion on this matter.

type
ClickEventDelegate = block (sender: Object; args: ClickEventArgs);

delegate void ClickEventDelegate(Object sender, ClickEventArgs args);

ClickEventDelegate = (Object sender, ClickEventArgs args) -> ()

Inline Block Declarations

Oxygene and Swift support inline block declarations in the signatures for methods, fields or properties, without having to declare an explicit, named
type.

Rather than requiring the declaration of an explicit and named block type as in the sample above, theblock keyword can be used inline to describe a
block parameter:

MyClass = public partial class
public
method DoSomethingAndCallMeBack(aCallback: block(aSuccess: Boolean));
property ErrorCallback: block(aErrorMesage: String);
end;

public class MyClass {
public func doSomethingAndCallMeBack(aCallback: (aSuccess: Boolean) -> ()) {}
public var errorCallback: (aErrorMesage: String) -> () { get {} set {} }

}

Here, the DoSomethingAndCallMeBack method expects a block parameter, but the parameter does not refer to a named block type declared elsewhere,
but provides the required signature right as part of the method declaration. Similarly, the ErrorCallback property uses an inline block type, as well.

Invoking blocks

To invoke a block, it can simply be called upon in a statement, as if it were a regular method. In Oxygene, parenthesis are optional when no
parameters are expected, but depending on context, they can be useful to avoid ambiguity between calling a block or merely referring to the block.

type
MyBlock = block;
...
begin
var meth: MyBlock;
meth := ...; // assigning the block a value
meth; // invoking the block
meth(); // invoking the block
end;

delegate void MyBlock();

1.

MyBlock meth;
meth := ...; // assigning the block a value
meth(); // invoking the block

MyBlock = () -> ()
/...

{
var meth: MyBlock?
meth = ... // assigning the block a value
meth() // invoking the block

Depending on the platform, the underlying type used to implement blocks might also expose members that can be called on the block explicitly. For
example, on .NET, blocks are based on the System.Delegate type that exposes members such asBegininvoke, Invoke or Endinvoke, which can be called
for asynchronous execution. On Cocoa, blocks expose no callable members but are compatible with the Object and id types, participate in (ARC) and
can, for example, be stored in NSArrays.

For cross-platform code, it is encouraged to not make assumptions about members being available on block instances.

More Use Cases and Examples

You can assign a method to a block:

type
MyBlock = block;

MyClass = public partial class
public
method ClassMethod;
BlockVar: MyBlock;
end;

/...

BlockVar := @ClassMethod;
delegate void MyBlock();
public class MyClass

{

MyBlock blockVar;

static void ClassMethod() {}
}

/...
blockVar = &ClassMethod;
public class MyClass

var blockVar: () -> ()
static func ClassMethod() {}
}

/...
blockVar = &ClassMethod

You can assign an anonymous method to a block:

type
MyBlock = block;

MyClass = public partial class
public
BlockVar: MyBlock;
end;

/...
BlockVar := method begin
// do something;
end;
delegate void MyBlock();

public class MyClass

MyBlock blockVar;
}

1.

blockVar = => {
// do something
}

public class MyClass

var blockVar: () -> ()
}
...
blockVar = { in
// do something
}

Or you can assignh an Oxygene or C#Lambda Expression:

type
MyBlock = block(aMessage: String);

MyClass = public partial class

public
BlockVar: MyBlock;
end;
begin
BlockVar := aMessage -> writeLn(aMessage);
end;

delegate void MyBlock();
public class MyClass

MyBlock blockVar;
}

...
blockVar = => {

// do something
}

On .NET, one important use of a block variable is to register a callback function into unmanaged code. If you need to pass a function pointer to
unmanaged code via P/Invoke, you can obtain a function pointer via the block variable rather than the method itself. This will ensure that the function
pointer remains in scope for the lifetime of your object:

var i: IntPtr;
i := Marshal.GetFunctionPointerForDelegate(BlockVar);

IntPtr i;
i = Marshal.GetFunctionPointerForDelegate(BlockVar);

var i: IntPtr?
i = Marshal.GetFunctionPointerForDelegate(BlockVar)

When passing delegates to unmanaged code, it's important to remember to keep a reference to the delegate instance on the .NET side for the whole
time the unmanaged side needs it.

Block Polymorphism

On Cocoa, blocks with descendant types are assignment compatible, providing support for so-called "Polymorphic Blocks".
Consider the following two block definitions:
type

Foo = block (sender: object; data: FooData);
FooEx = block (sender: object; data: FooDataEx);

delegate Foo(object sender: object; FooData data);
delegate FooEx(object sender, FooDataEx data);

Foo = (sender: object; data: FooData) -> ()
FooEx = (sender: object; data: FooDataEx)- ()

You can assign a FooEx block to something that expects aFoo; basically FooEx behaves as if it were a descendant ofFoo.

On .NET, the blocks types themselves are not assignment compatible, but a block accepts ancestor classes of the originally declared type for the
parameter (so a method(a: object) can satisfy a block(a: string)). Similarly, descendant types are accepted for theresult and for parameters (amethod: string
can satisfy a block: object). This feature is especially relevant for writing WPF applications, as WPF's event routing system uses shared methods to
register event handlers, which expect a specific block.

Compatibility Rules

A parameter of a block is compatible with the corresponding parameter of a method, if the type of the block parameter(s) is more restrictive than the
type of the method parameters. This guarantees that an argument passed to the block can be passed safely to the method.

Similarly, the return type of a block is compatible with the return type of a method, if the return type of the method is more restrictive than the return
type of the block, because this guarantees that the return value of the method can be cast safely to the return type of the block.

Class Contracts

Class Contracts cover two constructs that enableDesign by Contract-like syntax to create classes that can test themselves.

e Pre-conditions and Post-conditions
e Invariants

If a contract is not upheld, an assertion is generated in the same fashion as calling thessert() system function would.

While originally devised for theOxygene language, class contracts are available for all Elements languages (except Go, which does not support
classes), as language extensions.

Pre-Conditions and Post-Conditions

Pre- and post-conditions are used to describe conditions that are required to be true when a method is called or after a method exits, respectively.
They can be used to check for the validity of input parameters, results, or for the state of the object required by the method.

The require and ensure (Oxygene) or __require and __ensure (C#, Swift and Java) keywords will expand the method body to list the preconditions; both
sections can contain a list of Boolean statements, separated by semicolons.

In Oxygene, the require and ensure sections live before and after the mainbegin/end pair of the method body; in C#, Swift, and Java,_require and __ensure
can provided as sub-sections within the body.

Examples:

method MyObject.DivideBy(aValue: Integer);

require

aValue # 0 : "Cannot divide by zero";
begin

MyValue := MyValue/aValue;
end;

method MyObject.Add(altem: Listltem);
require
assigned(altem);
begin
InternalList.Add(altem);
ensure
Count = (old Count) + 1;
end;

method MyObject.DoWork(aValue: Integer);
require
assigned(fMyWorker);
fMyValue > 0;
aValue > 0;
begin
//... do the work here
ensure
assigned(fMyResult);
fMyResult.Value >=5;

end;

void DivideBy(int value)
{

__require

{

value != 0 : "Cannot divide by zero";

MyValue = MyValue/value;
}

void Add(Listitem item)
{

__require

{

item != null;

InternalList.Add(item);

__ensure
{
Count == (__old.Count) + 1;
}
}
void DoWork(int value)
{
__require
{
fMyWorker != null;
fMyValue > 0;
value > 0;

}
//... do the work here
__ensure
{
fMyResult !'= null;
fMyResult.Value >=5;
}
}

func Divide(by value: Integer) {
__require {
value != 0 : "Cannot divide by zero";
}
MyValue = MyValue/value;

func Add(item: Listltem) {
InternalList.Add(item);
__ensure {
Count == (__old.Count) + 1;
}
}

func DoWork(_ value: Int) {
__require {
fMyWorker != null;
fMyValue > 0;
value > 0;

}
//... do the work here
__ensure {
fMyResult != nil;
fMyResult.Value >=5;
}
}

void DivideBy(int value) {

__require {
value != 0 : "Cannot divide by zero";

MyValue = MyValue/value;

}
void Add(Listltem item) {
__require {
item != null;

}
InternalList.Add(item);
__ensure {
Count == (__old.Count) + 1;
}
}

void DoWork(int value) {
__require {
fMyWorker != null;
fMyValue > 0;
value > 0;

}
//... do the work here
__ensure {
fMyResult != null;
fMyResult.Value >=5;
}
}

Sub DivideBy(aValue As Integer)
Require
Check aValue = 0, "Cannot divide by zero"
End Require
MyValue := MyValue/aValue;
End Sub

Sub Add(altem As Listltem)
Require

Check assigned(altem)
End Require
InternalList.Add(altem);
Ensure
Check Count = (Old.Count) + 1
End Ensure
End Sub

Sub DoWork(aValue As Integer)
Require
Check assigned(fMyWorker)
Check fMyValue > 0
Check aValue > 0
End Require
' ... do the work here
Ensure
Check assigned(fMyResult)
Check fMyResult.Value >= 5
End Ensure
End Sub

The old (Oxygene and Mercury) or__old (C#, Swift and Java) prefix operator can be used in theensure section for local variables, parameters and
properties to refer to the original values before the execution.

The compiler will add code to save these to local variables before executing the method body.old/_old is supported for strings and value types. When
used with Reference Types such as Classes, it will capture the old pointer,not the old state of the object being pointed to.

Invariants

In contrast to pre- and post-conditions, invariants are used to define a fixed state the object must fulfill at any given time. Invariants can be marked
public or private.

Public invariants will be checked at the end of every public method (after the method's "ensure" block, if present, has been checked) and if an
invariant fails, an assertion is raised.

Private invariants will be checked at the end of every method call, public or private.

The idea behind this separation is that public invariants must not be met by private methods, so theoretically a public method can defer work to
several private worker methods, and public invariants would only be checked after the public method finishes.

Examples:

type
MyClass = class;
public
... some methods or properties
public invariants
fField1l > 35;
SomeProperty = 0;
SomeBoolMethod() and not (fField2 = 5);
private invariants
fField > 0;
end;

public class MyClass
public __invariants

fieldl > 35;

SomeProperty = 0;

SomeBoolMethod() && !(fField2 == 5);
}

private __invariants

field > 0;
}
}

public class MyClass {
public __invariants {
fieldl > 35
SomeProperty = 0
SomeBoolMethod() && !(fField2 == 5)

}

private __invariants {
field >0

}

}

public class MyClass {
public __invariants {
fieldl > 35;
SomeProperty = 0;
SomeBoolMethod() && !(fField2 == 5);

}

private __invariants {
field > 0;

}

}

Public Class MyClass
' ... some methods or properties
Public Invariants
Check fFieldl > 35
Check SomeProperty = 0
Check SomeBoolMethod() And Not (fField2 = 5)
End Invariants
Private Invariants
Check fField > 0
End Invariants
End Class

Note that both types of invariant sections have full access to all private fields of the class, the only difference is the method (and property) calls they

apply to.

If a class specifies invariants, all fieldsmust be marked as private.

Custom Messages
By default, a generic Assertion call is generated, using the textual representation of the condition as message. For example, suppose that Method1

failed the following requirement:

require
A > 10;

__require

{
}

__require {
A>10

A >10;

}

__require {
A>10;
}

Require
Check A > 10
End Require

This would generate the following message: "Method1 assertion failed A > 10".

Both Invariants and Pre-/Post-Conditions can provide an optional more detailed error message to be included in the assertion when a check fails. This
must be in the form of a constant String Literal, separated from the expression with a colon (all languages except Mercury) or a comma (Mercury). If
the expression itself contains a colon/comma, the whole expression needs to be wrapped in parenthesis:

method MyObject.Add(altem: Listltem);
require

assigned(altem) : 'List Item for MyObject cannot be nil";
begin

InternalList.Add(altem);
ensure

Count = old Count +1 : 'MyObject: Count logic error’;
end;

void Add(Listltem item)

{
__require
{
(item != null) : "List Item for MyObject cannot be null";
InternalList.Add(altem);
__ensure
{
Count == (__old.Count) + 1 : "MyObject: Count logic error";
}
}

func Add(altem: Listltem) {
InternalList.Add(altem);

__ensure {
Count == (__old.Count) + 1 : "MyObject: Count logic error"
}
}
void Add(Listltem item) {
__require {
(item !'= null) : "List Item for MyObject cannot be null";
}
InternalList.Add(altem);
__ensure {
Count == (__old.Count) + 1 : "MyObject: Count logic error";
}
}
Sub Add(altem As Listltem)
Require
Check assigned(altem), "List Item for MyObject cannot be nil";
End Require
InternalList.Add(altem);
Ensure
Count = Old.Count + 1, "MyObject: Count logic error";
End Ensure®
End Sub
Notes

Note that not all members of a class can be used inside invariants, because some elements of a class (or the entire class system of your application)
can be accessed and written to directly, without the knowledge of the class.

If, for example, your invariant were to depend on a public field, other parts of your system would be able to modify this field directly, bypassing the
invariant checking. Of course non-private fields are discouraged in general and you should always use private fields and - where applicable - a
property with a higher visibility to make the field's value accessible.
Members that can be used in invariants are:

o private fields

e properties
e methods

See Also

e Assertion

Invariants and Pre- and Post-Conditions, and theold and implies Operators in Oxygene
Class Contracts in RemObjects C#

Class Contracts in Silver

Class Contracts in lodine

Class Contracts in Mercury

e o o o o

Conditional Compilation

Conditional compilation provides a way to have one set of source code that can be compiled slightly differently depending on certain conditions, such
as compiling for different platforms, compiling different versions/editions of your project, or, if you must, compiling the same code in Elements and
other compilers, for example:

Oxygene vs. legacy Pascal compilers, such as Delphi or Free Pascal
RemObjects C# vs. Microsoft Visual C# or Mono's C# Compiler
RemObjects Silver vs. Apple's Swift compiler

.NET vs. Cocoa vs. Java

e o o o

For example:

e The ECHOES, TOFFEE, COOPER and ISLAND symbols can be used to distinguish betweenplatforms, .NET, Cocoa, Java and Island, respectively.
e The ELEMENTS symbol can be used to conditionally check for Elements vs. other compilers (e.g. when sharing code with Delphi, Visual C# or
Apple's Swift Compiler).

Providing Conditional Defines

Conditional defines can originate from four sources:

o The compiler will provide a set of predefined symbols based on compiler version and platform, as outlined in theConditional Defines topics.
Examples include ELEMENTS (always defined) orCOCOA (defined for Apple's platforms).

o Referenced libraries or frameworks can provide additional symbols that are active if the respective namespace is used. For example, theOS SDK
provides TARGET_OS_IPHONE to distinguish between Mac and iOS, in the implicitly usedrtl namespace.

o A list of Project-wide defines can be specified in theProject Settings and will be available to check for throughout the project. These defines can
be configured separately for each configuration.

e Finally, defines can be set (and removed) right inside the source code using{$DEFINE} (Oxygene) or #define (C#, Swift and Java) Compiler
Directives. Defines set (or removed) with these directives will apply only to the code in the same file and below the directive.

Conditional Compilation w/ defined()

New in Elements 10, the defined() system function can be used to specify conditional compilation using regularif statements that integrate naturally
with the flow of the code.

Conditional Compilation w/ Directives

Wherever possible, i.e. inside method bodies, usingdefined() is the preferred way for conditional compilation. That said, support for conditional
directives such as $IF (Oxygene) and #if (C#, Swift and Java) is still provided, for use outside of method bodies (e.g. to conditionally omit whole
methods or classes).

Conditional compilation is controlled by surrounding blocks of code withsIF/#if $ENDIF/#endif directives that check for specific conditions. These blocks
can be nested within each other.

The $IF/if directive checks for the availability of one or more symbols, and begins a block that will conditionally be compiled if (and only if) the
expression passed to the directive is found to be true (i.e. defined). Any block started with an "if" directive must be terminated with a matching
$ENDIF/#endif directive to close it off (and can optionally also include additional$ELSE/#else sections to provide alternate blocks of code that will be
considered if the original condition was not met).

New since Elements 5.2 release, theif (and elseif) directives accept not only a single symbol name to check for, but can also handle two or more
symbols combined with the boolean logical operators (AND, OR, XOR and NOT in Oxygene, and &&, ||, ~ and ! in C#, Swift and Java). This allows for more
complex checks against several symbols, without the need to awkwardly nest symbols.

In Oxygene, the $IF directive replaces the older $IFDEF and $IFNDEF directives, which are still supported, but considered legacy.
Examples:

{$IF COOPER} // Compile the following for Java only.

{$IF TOFFEE AND TARGET_OS_IPHONE} // Compile the following for Cocoa / iOS only.
{$IF ECHOES OR COOPER} // Compile the following for .NET and Java (but not Cocoa).
{$IF NOT TOFFEE} // Don't compile the following for Cocoa (but do for .NET and Java).

#if COOPER // Compile the following for Java only.

#if TOFFEE && TARGET_OS_IPHONE // Compile the following for Cocoa / iOS only.
#if ECHOES !! COOPER // Compile the following for .NET and Java (but not Cocoa).
#if 'TOFFEE // Don't compile the following for Cocoa (but do for .NET and Java).

#if COOPER // Compile the following for Java only.

#if TOFFEE && TARGET_OS_IPHONE // Compile the following for Cocoa / iOS only.
#if ECHOES || COOPER // Compile the following for .NET and Java (but not Cocoa).
#if 'TOFFEE // Don't compile the following for Cocoa (but do for .NET and Java).

#if COOPER // Compile the following for Java only.

#if TOFFEE && TARGET_OS_IPHONE // Compile the following for Cocoa / iOS only.
#if ECHOES || COOPER // Compile the following for .NET and Java (but not Cocoa).
#if 'TOFFEE // Don't compile the following for Cocoa (but do for .NET and Java).

The "elseif" (or "elif" in C#) directive follows a previous 'ff" directive (and optional "elseif" directives). It closes the previous blocks and starts a new block
of code that will be compiled if none of the previous conditions have been met and the condition provided in the directive itself is met.

"elseif"/"elif" allow the cascading of multiple cases, comparable to a case statement in regular code, without requiring a convoluted nesting of multiple
"if"/"endif" directives.

Examples:

{$IF COOPER} // Compile the following for Java only.

{$ELSEIF ECHOES} // Compile the following for .NET only.
{$ELSEIF TOFFEE} // Compile the following for Cocoa only.
{$ELSE} // Compile if neither of the previous three were defined.
{$ENDIF} // Done.

#if COOPER // Compile the following for Java only.

#elif ECHOES // Compile the following for .NET only.

#elif TOFFEE // Compile the following for Cocoa only.

#else // Compile if neither of the previous three were defined.
#endif // Done.

#if COOPER // Compile the following for Java only.

#elseif ECHOES // Compile the following for .NET only.

#elseif TOFFEE // Compile the following for Cocoa only.

#else // Compile if neither of the previous three were defined.
#endif // Done.

#if COOPER // Compile the following for Java only.

#elif ECHOES // Compile the following for .NET only.

#elif TOFFEE // Compile the following for Cocoa only.

#else // Compile if neither of the previous three were defined.
#endif // Done.

The "else" directive follows a previous "if" directive (and optional "elseif"/"elif" directives). It closes the previous blocks and starts a new block of code
that will be compiled if none of the previous conditions have been met. The block needs to be closed with a final "endif" directive.

Finally, the "endif" directive, as discussed in the previous sections, is used to close off a conditional section started withf. Afterwards, compilation will
continue unconditionally (or based on any conditions set forth by a nested "if" directive) once again.

Within an ignored block (i.e. anif, elseif or else block that is not being compiled) all code and all compiler directives excepttf, elsex and endif are ignored.
Oxygene Legacy Directives

e {$IFDEF} — Legacy, use {$IF} instead.
e {$IFNDEF} — Legacy, use {$IF NOT} instead.
e {$IFOPT} — For Delphi compatibility, will always resolve as false.

Examples

begin
{$IFDEF TRIAL}
writeLn('This a trial version!');
{$ELSE}
writeLn('This is the full version');
{$ENDIF}

{
#if TRIAL
Console.WriteLine("This a trial version!");
#else
Console.WriteLine("This is the full version");
#endif

{
#if TRIAL
printin("This a trial version!");
#else
printin("This is the full version");
#endif

{
#if TRIAL
Console.WriteLine("This a trial version!");
#else
Console.WriteLine("This is the full version");
#endif

begin
{$IFDEF ECHOES}
writeLn(".NET");
{$ELSEIF COOPER}
writeLn('Java');
{$ELSEIF TOFFEE AND TARGET_OS_IPHONE}
writeLn('Cocoa on i0S');
{$ELSEIF TOFFEE}
writeLn('Cocoa and not iOS (i.e. OS X, tvOS or watchOS)');
{$ELSE}
writeLn("Some platform that hasn't been invented yet");
{$ENDIF}

{
#if ECHOES
writeLn(".NET");
#elif COOPER
writeLn("Java");
#elif TOFFEE && TARGET_OS_IPHONE}
writeLn("Cocoa on i0S");
#elif TOFFEE
writeLn("Cocoa and not iOS (i.e. OS X, tvOS or watch0S)");
#else
writeLn("Some platform that hasn't been invented yet");
#endif

{
#if ECHOES
writeLn(".NET");
#elif COOPER
writeLn("Java");
#elif TOFFEE && TARGET_OS_IPHONE}
writeLn("Cocoa on i0OS");
#elif TOFFEE
writeLn("Cocoa and not iOS (i.e. OS X, tvOS or watch0S)");
#else
writeLn("Some platform that hasn't been invented yet");
#endif

{
#if ECHOES
writeLn(".NET");
#elif COOPER
writeLn("Java");
#elif TOFFEE && TARGET_OS_IPHONE}
writeLn("Cocoa on i0S");
#elif TOFFEE
writeLn("Cocoa and not iOS (i.e. OS X, tvOS or watch0S)");
#else
writeLn("Some platform that hasn't been invented yet");
#endif

Defining or Undefining Conditionals

The $DEFINE/#define directive defines a new symbol for the pre-processor; the defines are position dependent, so the symbol will only be defined for
everything after the directive, in the same source file.

{$DEFINE TRIAL}
#define TRIAL
#define TRIAL

#define TRIAL

The $UNDEF/#undef directive removes a symbol for the pre-processor, if previously defined. Like Yefine", the directive is position dependent, so it will
only affect code after the directive. Undefining can remove any pre-processor symbol, even ones defined by the compiler itself or the project options.
When a symbol doesn't exist, the undefine will be ignored.

{$UNDEF TRIAL}
#undef TRIAL
#undef TRIAL

#undef TRIAL

See Also

e Compiler Directives
e defined() System Function

e exists() System Functions

Duck Typing

The Elements compiler includes explicit support for Duck Typing, for all languages.

The name "duck typing" comes from the old saying that if something walks like a duck and quacks like a duck, it is a duck - and applies the same
concept to objects. In essence, it means that if an object has all the methods or properties required by a specific interface, with Duck Typing you can
treat it as if it implemented that interface (even if it does not).

Imagine we have the following (a bit contrived) types declared, and let's further assume that some of them are outside of our direct control - maybe
they are declared in the core framework, or in a piece of the project we don't want to touch:

type
IFooBar = interface
method DoFoo;
method DoBar;

end;

Foo = class
method DoFoo;

end;

Bar = class
method DoBar;

end;

FooBar = class
method DoFoo;
method DoBar;

end;

public interface IFooBar

void DoFoo();
void DoBar();
}

public class Foo

void DoFoo() {}
}

public class Bar

void DoBar() {}
}

public class FooBar

void DoFoo() {}
void DoBar() {}
}

public interface IFooBar {
func DoFoo()
func DoBar()

}

public class Foo {
func DoFoo() {}
}

public class Bar {
func DoBar() {}

public class FooBar {
func DoFoo() {}
func DoBar() {}

}

public interface IFooBar
{

void DoFoo();

void DoBar();
}

public class Foo

void DoFoo() {}
}

public class Bar

void DoBar() {}
}

public class FooBar
{
void DoFoo() {}
void DoBar() {}
}

Public Interface IFooBar
Sub DoFoo()
Sub method DoBar()
End Interface

Public Class Foo
Sub DoFoo()
End Class

Public Class Bar
Sub DoBar()
End Class

Public Class FooBar
Sub DoFoo()
Sub DoBar()

End Class

As you see, we have an interfacelFooBar that declares a couple of methods. We also have three classes that look pretty similar but with one caveat:
while they do implement some of the same methods defined by IFooBar, they don't actually implement thelFooBar interface itself. This means that if
we now have a method like this:

method Test(o: IFooBar);
void Test(IFooBar o);
func Test(_ o: IFooBar)

void Test(IFooBar o);

Sub Test(o As IFooBar)

we cannot actually pass aFooBar instance to it, even though FooBar obviously implements all the necessary methods. There's nothing that ourTest
method could throw at the FooBar instance that it could not handle, yet we can't just pass it in.

Enter Duck Typing

Starting with Elements 5.0, the generic duck<t>() system function allows you to apply duck typing to let the compiler "convert" aFooBar into an IFooBar,
where necessary. For example, you could write:

var fb := new FooBar;
Test(duck<IFooBar>(fb));

var fb = new FooBar();
Test(duck<IFooBar>(fb));

let fb = FooBar()
Test(duck<IFooBar>(fb))

var fb = new FooBar();
Test(duck<IFooBar>(fb));

Dim fb = New FooBar()
Test(duck(Of IFooBar)(fb))

and pass the object in. The result ofduck() is, essentially, anIFooBar, and you can use it in any context that accepts aniFooBar - method calls, variable
assignments, you name it. This works because FooBar implements all the necessary methods to satisfy an IFooBar implementation - and the compiler
takes care of the rest.

So what if that isnot the case? What would happen if instead we write the following?

var fb := new Foo;
Test(duck<IFooBar>(fb));

var fb = new Foo();
Test(duck<IFooBar>(fb));

let fb = Foo()
Test(duck<IFooBar>(fb))

var fb = new Foo();

Test(duck<IFooBar>(fb));

Dim fb = New Foo()
Test(duck(Of IFooBar)(fb))

where, as you note above, Foo does implement DoFoo, but does not implement DoBar, which is required for the interface. So clearly,Foo doesn't qualify
to be duck typed as an IFooBar? That's correct, and in fact the line above would fail, with an error such as:

e (E265) Static duck typing failed because of missing methods
e (N2) Matching method "MyApplication.IFooBar.DoBar" is missing

But what if you're fully aware your object only satisfies a subset of the interface, and you want to pass it anyway? Maybe you know thatest only
makes use of DoFoo and does not need DoBar?

Elements' duck typing has a solution for this as well, by passing an optionalbuckTypingMode enum value to the duck() function. DuckTypingMode has three
values; the default is Static*, and we've seen it in action above. Static duck typing will enforce that the passed object fully qualifies for the interface,
and will fail with a compiler error if any member (method, property or event) of the interface is not provided by the type.

The second DuckTypingMode is Weak. In weak mode, the compiler will match any interface members it can find, just like in static mode. But for any
member it does not find on the original type, it will generate a stub that throws a "Not Implemented" exception. This enables us to write:

var fb := new Foo;
Test(duck<IFooBar>(fb, DuckTypingMode.Weak));

var fb = new Foo();
Test(duck<IFooBar>(fb, DuckTypingMode.Weak));

let fbo = Foo()
Test(duck<IFooBar>(fb, DuckTypingMode.Weak))

var fb = new Foo();
Test(duck<IFooBar>(fb, DuckTypingMode.Weak));

Dim fb = New Foo()
Test(duck(Of IFooBar)(fb, DuckTypingMode.Weak))

and successfully pass a Foo object to Test(). As long as Test only calls DoFoo, everything will be fine and work as expected; ifTest were to call DoBar as
well, an exception would be thrown at runtime.

The third and final DuckTypingMode isDynamic. Dynamic duck typing will not directly map methods of the source object to the interface; instead, it will
create a wrapper class that will dynamically call the interface members, based on what is available at runtime.

You can think of these three modes of duck-typing as being on a scale, withstatic (the default) being 100% type safe. If static duck typing compiles,
you can rest assured that everything will work as you expect, at runtime. wWeak mode trades some type safety for a model that is weaker typed,
comparable to, for example, Objective-C's id type (which essentially does weak duck typing everywhere by default - if an object has a method of a
given name, you can call it). Dynamic is at the opposite end of the scale, completely resolving all calls at runtime, more like true dynamic languages
such as JavaScript.

Soft Interfaces

So this is all good and well, but imagine you have a large (and untouchable) library with classes that implement the DoFoo/DoBar pattern, and you

plan to use those all over your code base. Sure, you can declare IFooBar, and use the duck method to duck-type those objects all over the place, but
that will get annoying quickly. The compiler knows that DoFoo and DoBar methods are enough to satisfy the interface, so wouldn't it be great if you could
let the compiler worry about the duck typing where necessary?

That's where soft interfaces come in. Instead of declaringlFooBar as above, you could declare it as aSoft Interface, as follows:

type
IFooBar = soft interface
method DoFoo;
method DoBar;
end;

[Softinterface]
public interface IFooBar

void DoFoo();
void DoBar();
}

@Softinterface

public interface IFooBar {
func DoFoo()
func DoBar()

}

@Softinterface
public interface IFooBar
{
void DoFoo();
void DoBar();
}

<Softinterface>
Public Interface IFooBar
Sub DoFoo()
Sub method DoBar()
End Interface

Simply adding the soft keyword (in Oxygene) or the Softinterface aspect (all languages) lets the complier know that this interface represents a pattern it
will find in classes that do not actually implement the interface themselves. As a result, you can now simply declare the Test method as before:

method Test(o: IFooBar);
void Test(IFooBar o0);
func Test(_ o: IFooBar)

void Test(IFooBar o);

Sub Test(o As IFooBar)

And just pass your FooBar instances to it - no call toduck() necessary.

var fb := new Foo;
Test(fb);

var fb = new Foo();
Test(fb);

let fb = Foo()
Test(fb)

var fb = new Foo();
Test(fb);

Dim fb = New Foo()
Test(fb)

In essence, the compiler will treat any class that implements the matching methods -DoFoo and DoBar in this case - as actually implementing the
interface. This works even for classes imported from external frameworks.

To give a more concrete sample based on real life objects, imagine the following scenario:

type
INumberToStringFormatter = soft interface
method ToString(aFormat: String): String;
end;

var d: Double := 15.2;
var x: INumberToStringFormatter := d; // no cast necessary
writeLn(x.ToString('m'));

[Softinterface]
public interface INumberToStringFormatter

{
}

void string ToString(string format);

double d = 15.2;
INumberToStringFormatter x = d; // no cast necessary
writeLn(x.ToString("m"));

@Softinterface

public interface INumberToStringFormatter {
func ToString(_ format: String) -> String

}

let d: Double = 15.2;
let x: INumberToStringFormatter = d; // no cast necessary
writeLn(x.ToString("m"));

@Softinterface
public interface INumberToStringFormatter

{
}

void string ToString(string format);

double d = 15.2;
INumberToStringFormatter x = d; // no cast necessary
writeLn(x.ToString("m"));

<Soft>
Public Interface INumberToStringFormatter
Sub ToString(format As String) As String
End Interface
Dim d As Double = 15.2
Dim x As INumberToStringFormatter = d // no cast necessary
writeLn(x.ToString("m"))
Different to the regular ToString() method, not every object in .NET implements ToString(String). Yet with the soft interface declared here, you now
have a common type that you could assign a Double, an Int32 or even a Guid to - and call ToString(String) on. All with complete type safety.

See Also

e duck<t>() system Function
e Softinterface Aspect

Entry Point

The entry point is the bit of code where execution of a program starts. Every Elements project that has amutputType type of Executable, Exe or (on
Windows) WinExe must define declare an entry point, in order to successfully compile and launch.

Library projects and other non-executable projects do not require an entry point.

There are several ways of declaring the entry point for your project, some explicit and some more implicit. Let's have a look.

A Static Main() Method

The most common way to create an entry point for your project is to have a single static method callediain that contains the code that should run
when your executable launches.

It does nit matter what class this method is defined in (a common convention in Elements' templates isProgram), but it must adhere to a few
conventions:

o It must be named Main (case does not matter, even in the case-sensitive languages)
e |t must match of of a set of allowed signatures (see below)
e It must be marked as static, be in a static class, or be global.

The signature of the Main method must adhere to the following rules

« It may have an return type ofinteger/int/Int32, or optionally no return type (Void)
e |t can be parameterless, accepts as single parameter a Native Dynamic (unsized)Array of String or (on the native platforms) two C-style
parameters, the count of arguments and an array of pointer to an AnsiChar containing the parameters.

class method Main;

class method Main: Integer;

class method Main(aArguments: array of String);

class method Main(aArguments: array of String): Integer;

class method Main(aCount: Integer; aArguments: array of ~AnsiChar);

class method Main(aCount: Integer; aArguments: array of ~AnsiChar): Integer;

public static void Main()

public static void Main(string[] arguments)

public static void Main(int count, AnsiChar *arguments[])
public static int Main()

public static int Main(string[] arguments)

public static int Main(int count, AnsiChar *arguments[])

public static func Main()

public static func Main() -> Int

public static func Main(_ arguments: String[]) // note, not [String]

public static func Main(_ arguments: String[]) -> Int

public static func Main(_ count: Int, _ arguments: UnsafePointer<AnsiChar>[])
public static func Main(_ count: Int, _ arguments: UnsafePointer<AnsiChar>[]) -> Int

public static void Main()

public static void Main(string[] arguments)
public static int Main()

public static int Main(string[] arguments)

Public Shared Sub Main()

Public Shared Sub Main(aArguments As String())

Public Shared Sub Main(aCount As Integer, aArguments As Ptr(Of AnsiChar)())

Public Shared Function Main: Integer

Public Shared Function Main(aArguments As String()): Integer

Public Shared Function Main(aCount As Integer, aArguments As Ptr(Of AnsiChar)()): Integer

The variants with two parameters are supported onCocoa and the Island-backed platforms only, and only in languages that supportPointers.

Note that either the methods must be declared asstatic (optionally class method in Oxygene, and Shared in Mercury, or they can be contained in a class
that is marked as static (again, Shared in Mercury). Also note that in theJava language, the static keyword on a class does not mark it static but has a
different meaning, so in Java, the method itself must be marked static.

Resolving Ambiguity

If for some reason a project contains multiple candidates for an entry point, the compiler will by default emit an error and fail the compilation. You can
set the StartupClassProject Setting to the name of the class containing the properMain function; the Main method in that class must be non-ambiguous.

Simplified Entry Point in Oxygene

In Oxygene, rather than explicitly declaring a Main method, the project can have a single source unit where the finaknd. is preceded by the begin
keyword and zero or more statements that make up the entry point:

namespace MyProject;

uses
Foo;

// more types and methods could be here
begin

writeLn('The magic happens here');
end.

Simplified Entry Point in C#, Swift and Mercury

In C#, Swift and Mercury rather than explicitly declaring a static Main method, the project can have a single source unit that contains one or more
statements in the global scope (i.e. not contained in a type or func):

using Foo;
// more types and code could be here
writeLn("The magic happens here");

// more types and methods could be here

import Foo
// more types and code could be here
writeLn("The magic happens here");

// more types and funcs could be here

Imports Foo

' more types and code could be here
writeLn('The magic happens here');

' more types and Subs could be here

If variables, functions/methods or type declarations are foundafter the first statement, they will be treated not as globals, but as declared nested
within the implied Main function, will behave as local variables/types/closures and have access to the values of previously declared locals, as if the
entire body from the first statement to the end of the file were enclosed in a Main() method block.

Swift Base Library declares the following two global properties that give you access to the arguments that were passed to the executable at runtime,
even when using the simplified entry point:

public let C_ARGC: Int
public let C_ARGV: [String]

Technically, these would also be available form anywhere in code, and they are also available to other languages, if the project references the SBL.

In C# and Mercury, am implicit local variable/parameter namedargs is available, providing optional access to the array of command line parameters.

The ApplicationMain Aspect (Cocoa)

On the Cocoa platform, the NSApplicationMain/UlApplicationMain aspect can be applied to a single class in the project. That class will then be regarded as
the App Delegate, and the Aspect will automatically emit a proper Main() method during compilation that calls the correspondingNSApplicationMain or
UlApoplicationMain Cocoa runtime function, passing the app delegate type and the command line arguments as needed.

The App.xaml File (WPF)

In WPF projects on.NET, a .xamnl file marked with the ApplicationDefinition will contribute to a sub-class of typeSystem.Windows.Application and
automatically generate a Main() method that will instantiate and call the appropriate members of that class on startup.

Future Extensions

Swift recently proposed a new @main attribute to replace the NSApplicationMain or UlApoplicationMain aspects covered above. Support for this new Aspect
is planned, but not implemented yet. (SE-0281 @main: Type-Based Program Entry Points, bugs://84619).

Projects without Entry Point

Some project types do not require an entry point, because thay are not, technically, executables that can be launched directly by the OS:

e Library, StaticLibrary and DynamicLibrary projects cannot launch ad thus, as mentioned above, do not require entry points.

e WebAssembly Modules are not launched directly but technically are dynamic libraries loaded by the browser or Node.js runtime, which
communicates with the code via other means than a Main() method

o Android Applications, similarly, are launched by the Android runtime, which will call one of possibly severalctivity classes

e ASP.NET and ASP.NET Core and related projects are launched and called into by the ASP.NET runtime or the web server.

See Also

e StartupClass Project Setting
e NSApplicationMain/UlApplicationMain
e Top-Level Statements in Mercury

Exception Handling

Exceptions are the fundamental way how Elements deals with errors, in a consistent way that works the same across all platforms, and works similarly
for all languages.

Exceptions happen asynchronously from the regular application flow. When an error occurs, an exception is "raised" (in Oxygene parlance) or "thrown"
(in C#, Swift and Java parlance), and it interups the current execution flow at that point. The exception travels back up the call stack of methods, until
it is handled (or "caught") by an exception handler, or until it reaches the top of stack.

Exceptions can be caught explicitly, by code in your project, or implicitly, by the surrounding platform or application framework (such as Cocoa,
WinForms, or WPF) that provides the execution context for your app.

If an exception reaches the top of its stack, uncaught, it will usually result in termination (or "crash") of your application.

As an exception travels up the stack, each stack frame gets the chance to interact with it, to perform cleanup, save release of resources, error logging,
or to catch the exception.

How Exceptions Happen

There are three typical sources for an exception:

1. Your code explicitly raises an exception, because it detected an error condition, using theraise (Oxygene) ot throw (C#, Swift of Java) keyword.
2. Your code performed an action that lead the compiler or runtime to generate an exception (such as a null reference access, or a bad cast).
3. Your code called a framework, platform, or third party library API that in turn caused an exception.

The subsequent behavior is identical, in all three cases. In the last case, theCall Stack of the exception might contain further details about the original
source of the error.

Raising/Throwing Exceptions Manually

If your code deems it necessary, it can manually raise an exception, using theaise (Oxygene) ot throw (C#, Swift of Java) keyword:

if i > 5 then

raise new Exception("Did not expect a value larger than five!");
if (i >5)

throw new Exception("Did not expect a value larger than five!");
ifi>5{

throw Exception("Did not expect a value larger than five!")

}

if (i > 5)
throw new Exception("Did not expect a value larger than five!");

While not the most common case for exceptions, this is useful for when your code detects error conditions that it is not prepared to handle. Raising an
exception is a convenient way of putting the onus for the bad input on the caller, rather than dealing with bad data at the current level of your
algorithm, for example.

The higher levels of your app might be better equipped to handle the error, depending on its cause - for example, if it was caused by bad user input,

you might just want to display an error message to the user, but if the exception was caused by faulty logic on the higher level, the exception will let
you know that a bug fix is needed there.

Catching Exceptions

If you expect certain sections of code to throw exceptions, sometimes it makes sense to explicitly catch and deal with the error at the right level. For
example, when writing data to a disk, an "expected" cause for an exception could be that the disk is full, or the file is locked.

Each language provides mechanism for catching exceptions, either those of a certain type (e.g. only errors related to network access) or more widely
all exceptions:

Oxygene: try/except Blocks
C#: try/catch Blocks

Swift: do/catch Blocks
Java: try/catch Blocks

e o o o

Except on the very highest level of your application, it usually makes sense to catchonly those types of exceptions you expect, and know how to deal
with at that level, and let all other exceptions bubble further up. For example, in a library that downloads a file from the network, you might
reasonably expect network errors, or a "disk full" error, and have the means to react to those (maybe retry the download, or fail with a new, more
high-level error), but you will probably have very little means to deal with, say, a null reference exception, or an out of memory condition - so it will be
best to let those pass through.

Depending on the type of your application, you might want to catchall exceptions and the top level (to prevent the user from seing an ugly crash or
have your app just disappear), but you should also keep im mind that some truly unexpected exceptions might leave your app in an inconsistent
state. Sometimes it is better to show the user a nice error and then quit, rather than keep running with bad data, and destroy the user's document in
the process.

try
// this might raise an Exception
except
on E: I0OException do
// handle error
end;

try
{
// this might raise an Exception

catch (IOException e)

// handle error

}

do {

// this might raise an Exception
} catch IOException {

// handle error

}
try

{
// this might raise an Exception

}
catch (IOException e)

// handle error

}

Protecting Code from Exceptions, and Cleaning Up

Some methods will need to perform cleanup or housekeeping when an exception, any exception, occurs, even if the code does not deal with the
exception itself.

For example, your code might open a file, read and process its data, and then close the file. Any number of (unexpected) errors could occur during the
reading or processing - but you would still need to make sure the file gets closed properly, else it might stay locked, or lose data.

Again, each language has a construct for this:

Oxygene: try/finally Blocks
C#: try/finally Blocks

Swift: defer or __finally Blocks
Java: try/finally Blocks

e o o o

Code in a finally (or defer, for Swift) block will runregardless of whether an exception occurred or not, making it perfect for cleanup code that you want
to run both on success and on failure.

var file := OpenfFile(...);
try
// this might raise an Exception
finally
file.Close();
end;

var file = OpenFile(...);
try

// this might raise an Exception
}
finally

file.Close();
}

let file := OpenfFile(...)
defer {
file.Close()

// this might raise an Exception

var file = OpenfFile(...);
try

// this might raise an Exception
}
finally

file.Close();

}

using statements are a convenient way to clean up resources that implement theDisposable pattern, as they essentially combine afinally/defer with a
call to a standardized clean-up method:

Oxygene: using Blocks

C#: using Blocks

Swift: __using Blocks

Java: "try with Resource" Blocks

e o o o

Common Exception types

Each platform and library has its own set of standard exceptions for errors that occur when working with the platform. We recommend to familiarize
yourself with the platform and/or the third party libraries you use to see which exceptions you might need to handle ("catch" and deal with) in your
code.

By convention, all exception types descend from the rootException base class, available unde the same name on all platforms. You can use this type
(or a type-less except or catch clause) if you want to catchall exceptions - which is recommended only on the very highest level of your app.

There are a couple of standard exception types you will come across all platforms that are generated by the compiler itself, for invalid code patterns.

« A Null Reference Exception will occur if you try to access members of an object on a variable that has not been initialized yet, and containsil
or null, or when you try to pass a nil or null value top a parameter that does not acceptnullable values.

« An Invalid Cast Exception will occur if you try to cast or forcibly assign an object reference to the type it is not compatible with (e.qg. if you try
to cast a String to a Button).

Stack Traces

Exceptions typically contain a stack trace that gives you information of the different levels of method calls your application was in at the time the
exception occurred. The stack trace (along with other parameters of the exception, like its Message) can be very useful to narrow downwhere an
exception occurred, even when it was called (and maybe logged for diagnosis) at a higher level of your app.

If your project uses Elements RTL, a property called CallStack is available consistently across all platforms to give you access to the call stack for the
exception.

See Also

Exception base type

try statements in Oxygene

using statements in Oxygene
using statements in Swift

Exceptions and Error Handling in Swift
Elements RTL

e o o o o o

Extensions

Extensions are a powerful mechanism that lets you add additional capabilities to an existing type - whether the original type is part of your code base,
or imported externally.

For example, you can add commonly needed helper methods to any core framework type such asstring or even the baseObject type. But they can also
be helpful for extending your own types in flexible ways, similar to Partial Classes.

Elements provides two ways to add extensions: Type Extensions and individual Extension Methods (the latter in Oxygene only).

Type Extension

Type Extensions add one or more members to an existing type, which might be declared locally in the same projecor externally. The new members
added by the extension will appear alongside the regular members of the type, and be available (subject to visibility) everywhere the extension is in
scope (i.e. when the namespace the extension is defined in is used/imported).

An extension declaration looks much like a type declaration of its own, but does not in fact declare a new type, merely extends the existing type.
Extensions can reside in any namespace, and do not need to be declared within the same namespace as the original type.

The extension (Oxygene and Swift) or__extension (C#) keyword is used to declare a type extension, and a basic declaration looks something like this:

type
Foo = public extension class(String)
/...
end;

public __extension class Foo : String

/...
}

public extension String
{

/...
}

In Oxygene and C#, the extension syntax specified aname for the extension. This name should be unique, and can be descriptive of the goal of the
extension (such as String_PathHelpers for an extension to String that adds methods to work with file paths), but it is not otherwise exposed to the
consumer of the extension. In Swift, no such name is provided.

Inside the extension declaration, methods and (calculated) properties can be declared using the normal expected syntax.

Note that generally, extensions can only addbehavior to the class (e.g. methods and calculated properties), but no additionaldata (e.qg. fields, stored
properties or events). That is because the actual class (and with it its memory layout) is most likely defined by an external reference, and cannot be
extended.

One exception to this are extensions in Swift that are declaredin the same project as the original type. Swift allows such extensions to add fields and
stored properties as needed, because all extensions declared in the same project will become part of the actual type (much like Partial Classes in
Oxygene and C#).

Extensions can be provided for pretty much every kind of user type - including classes, records/structs, enums and even interfaces/protocols.

Version Notes

Extension support for C# is new inElements 9.0.

Constraints

Extension Methods

Extension Methods are an older syntax in Oxygene that predate the availability of full-fledged extension classes. They are declared similar to global
functions, prefixed with the extension keyword, and the name of the type they are extending:

interface
extension method String.ReversedString: String; public;
implementation
extension method String.ReversedString: String;
begin
/...

end;

end.
See Also

o Category Aspect
o Partial Classes

LINQ

LINQ Expressions, short for 'Language INtegrated Query", provide an elegant SQL-like way to perform query operations orSequences and collections
of data.

This includes ways to filter, sort, group and join sets of data. A LINQ expression always starts with the keywordrom, and its result is always a new
Sequence of the same or a derived (and possiblyanonymous) type.

In Oxygene, the from expression can be combined withfor loops using the for each from shortcut syntax, to combine a query expression with the loop
that iterates it.

Please refer to the documentation forfrom Expressions in Oxygene and the Standard Query Operators Overview provided by Microsoft for C#, for more
details on how to use LINQ

Oxygene, C# and Mercury Languages Only

This topic applies to the Oxygene, C# and Mercury languages only. LINQ isnot available in Swift, Java and Go as a language feature (although the
Query Expressions methods can be used as regular methods, of course).

LINQ Expressions in Oxygene vs. C# vs. Mercury

In general, Oxygene use the same syntax for LINQ queries asC#, with a few differences.
Oxygene uses with instead of let to introduce a new variable:

from o in list with name := o0.Name where ...

from o in list let name := 0.Name where ...
Oxygene uses a more readable "order by" for sorting, while C# uses the concatenation "orderby":

from o in list order by o.name descending

from o in list orderby o.name descending

Oxygene also supports distinct, reverse, skip and take as LINQ operators, which are not available in C#.

LINQ from Swift, Java and Go

While the Swift, Java and Go languages do not have a language integrated query syntax, the LINQ operators themselevs can still be used using regular
lambda/closure syntax:

let sortedAdults = people.Where({ $0.Age > 18 }).OrderBy({ $0.Name })

var sortedAdults = people.Where(p -> p.Age > 18).0OrderBy(p -> p.Name);

Queryable Sequences

Depending on the sequence type, LINQ expressions can be processed by the compiler in two ways. For normal sequences, each sub-expression is
mapped to simply call to an (extension) method on the sequence, as detailed below. However, for Queryable Sequences, the LINQ expression is
converted to meta data that can be interpreted at runtime - for example for translating a LINQ expression directly to an SQL query run against a
database.

Mapping

Each LINQ expression maps to an (extension) method on theSequence type, under the hood. Implementations for these methods are provided by the
framework, on .NET, and by the Elements libraries (libToffee, Cooper.jar and Island RTL) on the other platforms.

e distinct - maps to .Distinct()
e group X by Y/group by Y select x - maps to .GroupBy()

e from X in Y (inner from) - maps to.SelectMany() with optional Cast<T> if the type is specified; the result is turned into a special anonymous class
where both original and new are available.

e join on X equals Y - maps to Join()

e order by X - maps to.OrderBy, secondary order to.ThenBy()

e order by X descending - maps to.OrderByDescending, secondary order to.ThenByDescending()

e reverse - maps to .Reverse()

o where X - maps to .Where()

e select X - maps to.Select()

e skip X - maps to .Skip()

e skip while X - maps to .SkipWhile()

o take X - maps to .Take()

e take while X - maps to .TakeWhile()

« with (Oxygene) andlet (C#) - maps to.Select() with a special anonymous that makes both the original and the new variable available.
See Also

e from Expressions in Oxygene
e Sequence Types

e sequence of in Oxygene

o Standard Query Operators Overview (C#)

Mapped Types

Mapped type are a unique feature of the Elements compiler. They let you create compatibility wrappers for types without ending up with classes that
contain the real type. The wrappers will be eliminated by the compiler and rewritten to use the type the mapping maps to.

When working with Elements, you will most commonlyuse mapped types (for example as provided by theElements RTL cross-platform library), but
not very often implement mapped types yourself. All languages except Goprovide a syntax for easily and conveniently defining mapped types though,
if needed, via the mapped (Oxygene), _mapped (RemObjects C#, Swift and Java) andMappedTo (Mercury) keywords.

What Are Mapped Types?

You can think of mapped types (usually classes) as "type aliases" or "inline types". They are not types that will actually exist at runtime. Instead, they
are projections of an existing different type (the "real" type) under a new name and with a new set of visible members.

For example, a real class Foo might readily exist, with methods B and C. A mapped class called Bar might be defined, exposing methods calledy and z
that actually map to the methods B and C of the original class.

What is the Purpose of this Charade?

The most common goal for mapped classes is to allow different-but-similar classes that may exist on different platforms or in different frameworks to
be used by one set of code, without a lot of Conditional Compilation.

For example, all platforms (such as .NET, Java, Cocoa) include basic classes such as strings, lists, dictionaries, XML documents, etc. But while these
classes perform the same tasks on all platforms, their APIs generally look differently (both the classes and their members have different names), and
they might have subtly different behavior (for example, subString on Java treats the indices differently thanSubString on .NET).

A mapped class allows you to define a new class that is not "real" and that exposes one set of methods; this class can be used on all platforms. Under
the hood, that mapped class will actually map to the original platform-specific classes, depending on which platform your code is compiled.

The Elements RTL library provides a wide range of such classes, ready to be used across platforms - and you can of course define your own.

Read More

e Using Mapped Types
e Defining your own Mapped Types

¢ Mapped Members Syntax in the Oxygene Language

Using
Using mapped types is as seamless as it can get: you just use them.

Mapped types looks and behave just like a regular types, and your code can use them seamlessly, without even being aware they are mapped. You
can declare variables or fields of the type, new up instances of them, and make calls to their members.

Under the hood, the compiler will do all the hard work and map everything to calls to the original classes, depending on the platform you are compiling
for - but your code does not need to concern itself with that. For example, when using the [Elements RTL](/API/Elements RTL) mapped class library, you
can simply write platform-independent code that will "just work" everywhere.

Casting between Mapped and Real Types

Because instances of mapped types really are instances of the original type at runtime, there are a couple of extra things you can do with mapped
types:

e You can seamlessly cast from a mapped type to the real type, for example if you need access to a more advanced function not exposed on the
mapped type. Of course at this stage, the cast and the remaining code becomes platform-specific.

e You can seamlessly cast from a real type to a mapped type. For example, you may be working with platform APIs that return concrete platform
types (say a Cocoa API that returns an NSDictionary). To continue working with the type in a platform-independent way, you can just cast it to, say,
a Sugar.Dictionary.

These casts are completely toll-free - meaning they are mere instructions to the compiler to now treat the type differently. They incur no runtime
overhead and no conversion cost.

e You can also seamlessly pass mapped types to functions expecting a concrete type or vise versa. This makes it extremely easy to mix platform-
specific and platform-independent code. Your shared business code might define a method that expects a Sugar.XmiDocument, but it's being called
from platform-specific code that just read an NSXMLDocument on Cocoa. You can call the method, and simply pass theNSXMLDocument, without ugly
casts making the code more complicated.

Defining

Although it done rarely as part of most software projects, the Elements compiler provides a syntax for declaring your own mapped types in all
languages except Go. In Oxygene, the mapped keyword is used, while both C# and Swift use__mapped and Mercury uses MappedTo

Declaring Mapped Types in Oxygene

In Oxygene, the mapped keyword is used in both the type declarationand the individual mapped members. In the type declaration, the phrasemapped to
will indicate the underlying "real" class that is being mapped:

type
List<T> = public class mapped to ArrayList<T> ...;

Individual members can either be mapped via a shorthand syntax, right inside the type declaration, or they can provide a regular method or property
body and within there use the mapped keyword to refer to members of the underlying original type.

The inline shortcut syntax looks like the following snippet, which simply instructs the compiler to map any call tcRemoveAt to the remove method on the
real class:

method RemoveAt(index: Integer); mapped to remove(index);
An example for a regular method body that uses themapped keyword to call into the real class might look like this:

method List<T>.Remove(item: T);
begin

var n := mapped.IndexOf(item);

if n >= 0 then mapped.Remove(n);
end;

Declaring Mapped Types in C#, Swift, Java and Mercury

In C#, Swift and Java the __mapped class modifier can be used in the type header to indicate that a class definition is mapped, alongside the=>
operator to indicate the concrete class that is being mapped to. Mercury uses the MappedTo keyword, instead.

Similar to Oxygene above, the__mapped keyword can also be used inside the member bodies to refer to members of the real type, for C#, Swift and
Java. in Mercury, the MyMapped keyword serves that role.

public __mapped class MyList<T> => List<T>

public void Remove(T o)
{
var n = __mapped.IndexOf(o);
if (n >=0)
__mapped.Remove(n);

}

public __mapped class MyList<T> => List<T> {
func Remove(o: T) {
let n = __mapped.IndexOf(o)
ifn>=0{
__mapped.Remove(n)

}
}

public __mapped class MyList<T> => List<T>

public void Remove(T o)
{
var n = __mapped.IndexOf(o);
if (n >=0)
__mapped.Remove(n);
}
}

Public Class MyList<T>
MappedTo List<T>

Function Remove(o As T)
Dim n = MyMapped.IndexOf(o)
ifn>=0Then
MyMapped.Remove(n)
End If
End Function

End Class

Note that unlike Oxygene, no shorthand syntax for mapping is provided, both because the inline nature of the C#, Swift and Mercury class structure
makes that less necessary, and to keep changes/extensions to the C# standard and Swift syntax at a minimum.

Full Example

The code below shows a full example for the definition of a mapped class. More examples can be found by perusing the availabl&€lements RTL source
code.

namespace System.Collections;
interface

uses
java.util;

type
List<T> = public class mapped to ArrayList<T>
public

method Add(o: T); mapped to add(o);
method RemoveAt(i: Integer); mapped to remove(i);

method Remove(o: T);
begin

var n := mapped.IndexOf(o);

if n >= 0 then mapped.Remove(n);
end;

property Length: Integer read mapped.size;
property Item[i: Integer]: T read mappedl[i] write mapped[il; default;
end;

method List<T>.Remove(o: T);

namespace System.Collections

{

using java.util;
public __mapped class List<T> => ArrayList<T>

public void Add(T o) { __mapped.add(o); }
public void RemoveAt(int i) { __ mapped.remove(i); }
public void Remove(T o)
{
var n = __mapped.IndexOf(o);
if (n>=0)
__mapped.Remove(n);

public int Length

{
get
{
return __mapped.size;
}
}
public T this(int i)
{
get
{
return __mappedli];
}
set
__mappedl[i] = value;
}

}
}

import java.util

public __mapped class List<T> => ArrayList<T> {
public func Add(o: T) {
__mapped.add(o)

public func RemoveAt(i: Int) {
__mapped.remove(i)

public void Remove(T o) {
et n = __mapped.IndexOf(o)
if (n>=0) {
__mapped.Remove(n)

}
public var Length: Int {
eturn __mapped.size

}
public subscript(i: Int) -> T {
get {
return __mapped[i]
}
set {
__mapped[i] = newValue

}
}

package System.Collections;
import java.util.*;
public __mapped class List<T> => ArrayList<T>

public void Add(T o) { __mapped.add(o); }
public void RemoveAt(int i) { __ mapped.remove(i); }
public void Remove(T o)
{
var n = __mapped.IndexOf(o);
if (n >=0)
__mapped.Remove(n);

public int Length { get { return __mapped.size } }
public T this(int i) { get { return __mapped[i]; } set { _mapped[i] = value; } }
}

Imports java.util

Public Cass List<T>
MappedTo ArrayList<T>

Public Funcion Add(o As T)
MyMapped.add(o)
End Function

Public Funcion RemoveAt(i: Int) {
MyMapped.remove(i)
End Function

Public Sub Remove(T o) {
Dim n = MyMapped.IndexOf(o)
If n >= 0 Then
MyMapped.Remove(n)
End If
End Sub

Public Property Length: Int {
return MyMapped.size
End Property

Public Property(i: Int) -> T {
Get
Return MyMappedli]
End Get
Set
MyMapped[i] = Value
End Set
End Property

End Class

Multi-Part Method Names

Driven by the goal to fit in well with the API conventions on theCocoa platform, Elements has added support for multi-part method names to all
languages, and for all platforms.

Multi-part method names are essentially the ability for a method's name to be split into separate parts, each followed by a distinct parameter. This is
"required" on the Cocoa platform because all the platform's APIs follow this convention, and we wanted all Elements languages to be able to both
consume and implement methods alongside those conventions without resorting to awkward attributes or other adornments, and to feel at home on
the Cocoa platform.

But since multi-part method names are not intrinsically tied to the Cocoa platform, we have made them available as an option for all platfroms, and
encourage their use.

A multi-part method has separate name parts for each parameter (or, rarely, group of parameters).

In Oxygene, C# and Java, each parameter is a combination of a (partial) name, and its own set of parenthesis declaring that parameters internal name
and type.

In Swift and Mercury, the first part of the method name is followed by a single set of parenthesis enclosing all parameters; each parameter can
(optionally) declare an external name that becomes part of the method signature.

Unique to Swift and Mercury, the first parameter can declare an outer namen addition to the first part of the method name (e.g. Run(command)" in the
Swift samle below. To Oxygene, C# and Java, a method declared as such will appear as if the two parts have been concatenated and camel-cased (e.qg.
"RunCommand").

Note: methods can be overloaded on parts of their name, even if all versions acept the same kind of types.

Declarations

A multi-part method declaration looks like this:

method RunCommand(aCommand: String) Arguments(params aArguments: array of String): Boolean;
bool RunCommand(string Command) Arguments(string[] arguments)

func Run(Command: String, Arguments: [String]) -> Bool

Boolean RunCommand(String Command) Arguments(String[] arguments)

Function RunCommand(Command As String, Arguments arguments as String[])

Note that in Swift, all parameters are assumed to have an outer name, by default; if none is provided explicitly then the internal name of the
parameter is used externally as well. To declare a parameter without an external name, prefix it with an underscore:

func RunCommandWithArguments(_ Command: String, _ Arguments: [String]) -> Bool

By contrast, Mercury will only associate an external name with a parameter if one is explicitly provided, so - in line with traditional Visual Basic
declaration syntax - a regular parameter with just name and type will have no external name.

Calling Multi-Part Methods

When calling a multi-part method, a similar syntax is used, providing separate sets of names and parenthesis forOxygene C# and Java, and a single
set for Swift and Mercury:

Xx.RunCommand("ebuild") Arguments('MyProject.sIn', '--configuration:Debug');

x.RunCommand("ebuild") Arguments(new string[] {"MyProject.sIn", "--configuration:Debug"});

x.Run(Command: "ebuild", Arguments: ["MyProject.sIn", "--configuration:Debug"])

x.RunCommand("ebuild") Arguments(new String[] {"MyProject.sIn", "--configuration:Debug"});

x.RunCommand("ebuild", Arguments: {"MyProject.sIn", "--configuration:Debug"})

Multi-Part and Named Constructors

Constructors can also optional be named and have multi-part names. For simplicity, lets look at a constructor for @rocess class with a signature
similar to the above method:

constructor withCommand(aCommand: String) Arguments(params aArguments: array of String)
this withCommand(string Command) Arguments(string[] arguments)
init(Command: String, Arguments: [String]) -> Bool

this withCommand(String Command) Arguments(String[] arguments)

Sub New(Command command As String, Arguments arguments as String[])

Note that by convention, constructor names start with the wordwith and (usually) a noun describing the forst parameter. ForSwift and Mercury, this is
omitted, but is implicitly added by the compiler (e.g. when creating a class declared in Swift or Mercury from the other languages.

Also note that in C# and Java, the this keyword is used instead of the class name, to avoid ambiguity with a regular method syntax. We recommend
using this for all constructors, named or not.

On Cocoa, a named constructor maps to the correspondinginitwith* method on Objective-C level. That name is derived by uppercasing the W" (or the
first letter of the name, regardless of what it is, and prefixing it with init.

Creating an instance looks similar:

X := new Process withCommand('ebuild') Arguments('MyProject.sIn', '--configuration:Debug');

var x = new Proces withCommand("ebuild") Arguments(new string[] {"MyProject.sIn", "--configuration:Debug"});
let x = Process(Command: "ebuild", Arguments: ["MyProject.sIn", "--configuration:Debug"])

var x = new Process withCommand("ebuild") Arguments(new String[] {"MyProject.sIn", "--configuration:Debug"});

Dim x = New Process(Command "ebuild", Arguments: {"MyProject.sIn", "--configuration:Debug"})

Available on All Platforms

While the feature was created for Cocoa, multi-part method names are supported on all platforms, and considered a regular feature of the languages.
We encourage to use and embrace them, as they are a great tool to make code more readable and understandable.

See Also

Multi-Part Method Names in Oxygene
Multi-Part Method Names in C#
Named Parameters in standard Swift
Multi-Part Method Names in Java
Multi-Part Method Names in Mercury

o o o o o

Namespaces

Namespaces are used to group types into logical subsets - for example for related sections of a larger project, or for types from different libraries.
Within each namespace, type names must be unique, but two types of the same name may exist in different namespaces. With that, namespaces are
also a great way to help avoid naming conflicts between libraries.

A namespace is either a single identifier (e.g.System), or a list of identifiers, separated by a dot (e.g.System.Windows.Forms).

Types can be referred to from uniquely using theirfully qualified name, which is the short type name, prefixed with the namespace name. For
example, the Form class in System.Windows.Forms on .NET can be referred to using the full name,System.Windows.Forms.Form.

Types can also be referred to using their short name, if one of the following is true:
e The code referring to the type is part of the same namespace as the referred-to type.

« The type's namespace has been used/imported using theuses (Oxygene), using (C#) orimport (Swift) keyword.

Declaring Namespaces

Oxygene and C# support declaring namespaces via thenamespace keyword.

In Oxygene, the default namespace for any file is specified at the very top of each source file, and all types declared in the file will become part of
that namespace. If necessary (although uncommon), a type can be declared with a fully qualified name to override that.

In C#, one or more types can be surrounded by anamespace {} scope, and will become part of that namespace. A source file typically contains one
such scope, spanning the entire file, but it is perfectly legitimate for a file to declare multiple namespace scopes, if needed.

namespace Foo;

type
MyClass = public class // Foo.MyClass
end;

Bar.MyClass = public class // Bar.MyClass
end;
/...

namespace Foo

{

public class MyClass // Foo.MyClass
{
}

/...

Swift has no support for declaring namespaces on a per-file or per-class level - see below for details.

Platform Notes

On the Java platform, namespace names are required to be lowercase on runtime level. To make writing cross-platform code easier, the Elements
languages will allow you to write namespaces in lower case and mixed case (both when referring to and when declaring them), and will convert them
to lowercase for the compiled Java binary. Essentially, namespaces are treated as case insensitive, even in C# and Swift, which otherwise are case
sensitive.

One the Cocoa platform, namespaces are not supported by the underlying Objective-C runtime. The Elements languages allow you to fully use
namespaces, including having multiple classes with the same name in different namespaces. If two classes exist with the same name, their final
names in the binary will be mangled, to avoid naming conflicts on runtime level. This should be transparent to normal use of the class, but will cause
side effects if you use Objective-C Runtime APIs to query for or work with classes, or if you are building libraries to be consumed by Objective-C or
Apple Swift. It may also affect class names shown in class stacks when debugging.

Language Notes

The Swift language does not currently have support fordeclaring namespaces. All types you define using the Swift language will become part of the
default namespace configured for your project in Project Settings. Swift does have full support for referring to types in different namespaces, both
using fully qualified names and by importing namespaces to be in scope via the import keyword.

Namespaces vs. References

It is important to not confuse namespaces with References. While there is often a one-to-one mapping to which libraries contain which namespace,
that overlap is arbitrary. A single referenced library can contain types in multiple namespaces (which may or may not be named the same as the
library itself), and multiple libraries can contribute to the same namespace.

When using first or third party frameworks and libraries, it is important to know both what namespaces the types you want to use are in, but also
which libraries need to be referenced in order to make the types available, as well. For example, all standard Cocoa SDK libraries ship with Elements in
library files that match their namespace - Foundation.fx contains the Foundation namespace, UiKit.fx contains the UIKit namespace, and so on. On the other
hand, on .NET many core namespaces are located in mscorlib.dll and System.dIl.

Nullability

All Elements languages have the ability to specify thenullability of type references. Type references can be variables, fields, properties or method
parameters. For brevity, we'll use the term "variables" throughout this topic to refer to all four kinds of references.

Nullable variables may either contain a valid value or they may not — in the latter case they are considered to beil (in Oxygene and Swift parlance),
null (in C# and Java parlance) orNull (Mercury). Non-nullable variables must always contain a value and cannot be null/nil.

The different languages have different ways of expressing the nullability of a variable.

Oxygene, C#, Java, and Mercury

In Oxygene, C#l, Java and Mercury the default nullability of a variable is determined by its type. For value types (structs, enums and simple numeric
types), variables are assumed to be non-nullable by default, and always have a value. Reference types (i.e. classes or interfaces) are considered
nullable by default, and may be nuli/nil. Please refer to Value Types vs. Reference Types.

For example:

var i: Int32; // non-nullable by default, initialized to 0
var b: Button; // nullable by default, will be nil

Int32 i; // non-nullable by default, initialized to 0
Button b; // nullable by default, will be null

Int32 i; // non-nullable by default, initialized to 0
Button b; // nullable by default, will be null

Dim i As Int32 ' non-nullable by default, initialized to 0
Dim b As Button ' nullable by default, will be null

Nullability of a type can be changed by explicitly amending the type name with a modifier. In Oxygene, value types can be made nullable with the
nullable keyword, and reference types can be made non-nullable with thenot nullable keyword combination. In C#, Java and Mercury, value types can be
made nullable by appending ? to the typename, and reference types can be made non-nullable by appending, respectively.

For example:

var i: nullable Int32; // nullable

var b: not nullable Button := new Button(); // not nullable
Int327 i; // nullable

Button! b = new Button() // not nullable
Int327 i; // nullable

Button! b = new Button() /I not nullable

Dim i As Int327? ' nullable

Dim b As Button! = New Button() ' not nullable

In the above example, the value typeint32 was modified to make the declared variable nullable, while the reference typeButton (we're assuming Button
is a class) was made non-nullable. As you will also notice, the non-nullable variable requires immediate initialization (in this case by assigning a newly
created Button instance), because the default value of the type,nil or null, would be invalid for a non-nullable variable.

Note that type inference will always favor the type's default nullability. For example, in the code belows will be inferred to be a regularnullable string,
even though it's being assigned a decidedly non-null value.

vars := "Hello';
var s = "Hello";
var s = "Hello";

Dim s = "Hello";

Swift

The Swift language behaves slightly different. Regardless of the underlying type, all types are treated as being non-nullable by default - even
reference types.

For example:

var i: Int32 = 0; // non-nullable by default
var b: Button = Button(); // non-nullable by default

In addition, you'll also notice that Swift requiresany non-nullable variable to be explicitly initialized with a default value. Where Oxygene and C#
would assume a default value of 0 for the integer, Swift requires an initial value to be provided.

Swift has two ways to mark a variable as nullable, and that is either by appending a or a ? to the typename:

var i: Int32! // nullable
var b: Button! // nullable

var i2: Int32? // nullable
var b2: Button? // nullable

Conceptually, the nullable variables declared with! and ? are the same. Both i and i2 are of type nullable integer and initially arenil; both b and b2 are
of type nullable Button and also initially nil.

The difference lies in how the two sets of variables can beused in subsequent code.

The variables declared with ! are what Swift callsimplicitly unwrapped nullables. That means that even though the variable may benil, you can use it

as you please, and - for example - directly call members on it or (in the case of the integer) use it in an arithmetic expression. If you try to call into a
member of i or b and the actual variable isnil at runtime, a Null Reference Exception will be thrown. (This is how all nullable types behave in Oxygene
and C#, meaning that all nullable types in those languages are implicitly unwrapped nullables.)

By contrast, the variables declared with ? do not allow direct access to the type they may (or may not) reference. All you can do with variable® and
b2 is to compare them tonil, and to explicitly unwrap them in order to gain access to their content.

Note: While this syntax is not recommended for user code, the; (inverted exclamation point) suffix can be used in Silver's Swift dialect to mark a type
as being nullable only if it is a reference type - essentially giving it the same nullability behavior of the type name being used on its own in Oxygene or
C#. This is mainly used by code generators to express this behavior where the kind of type is not known at generation time.

var i: Int32; // not nullable, since Int32 is a value type
var b: Buttonj // nullable, since Button is a reference type

Unwrapping them can be done in two ways:
Unwrapping a Nullable Inline

You can use the! or ? operator on the variable to explicitly unwrap them in place before calling a member. For example:

let t1 = b2!.title
let t2 = b27.title

Using ! will check if the b2 variable has a value. If it does, thetitle property on thatButton instance will be called and returned intot1. If it does not, a
Null Reference Exception will be thrown. Assuming the title property was declared as typesString, then t1 will also be of typestring, i.e. it will be
assumed to be non-null.

When using ? instead, the variable will still be checked for a valid value, and if it has a valid value, that instance'sitle property will be called. However,
if b2 is nil instead, the call totitle will be bypassed, andt2 will be initialized tonil instead. As you might expect, this meanst2 itself will be of typesString? -
in other words a nullable String. (In essence ? behaves similarly to the Colon Operator () in Oxygene and the similar "Elvis" operator ¢.) in C#.)

Conditionally Unwrapping a Nullable

If you are planning to do more extensive calls on a nullable variable, it often makes sense to conditionally unwrap it into a new non-nullable variable
with Swift's if let construct:

iflet b3 = b2 {
let t3 = b3.title
}

The if let construct checks if the right hand of the assignment contains a value or isil. If it contains a value, that value is assigned to a new, non-
nullable variable (in this case b3) for the scope of the following block, and that block is executed. If the right hand side of the assignment isil, the
whole block is skipped.

Note how inside the block, members ofb3 can be called without the need for! or>.

Comparing Swift Nullables to the Other Languages

Conceptually, nullable Variables in Oxygene, C#, Java and Mercury behave equivalent to implicitly unwrapped nullables in Swift declared with !. They
can contain nil, but you can still access all their members directly - at the risk of aNull Reference Exception (NRE) occurring, if you don't make sure a
variable is not nil.

The other languages have no equivalent for Swift's more strictwrapped nullable types declared with ?, which cannot be acecssed without unwrapping
A second crucial difference to keep in mind, especially when working with both C#, Java or Mercury, but also with Swift, is that while Swift uses both
?and ! to mark a variable asnullable, ! has in fact the opposite meaning in RemObjects C#, Java and Mercury, marking an otherwise nullable reference
type as *not nullable.

Nullability of Types Compared:

Type Value Type Reference Type
Oxygene Non-Nullable Int32 not nullable String
Oxygene Unwrapped Nullable nullable Int32 String
Oxygene Wrapped Nullable N/A nullable String
C#/Java/Mercury Non-Nullable Int32 String!
C#/)ava/Mercury Unwrapped Int32? String
Nullable
C#/Java/Mercury Wrapped Nullable N/A String?
Swift Non-Nullable Int32 String
Swift Unwrapped Nullable Int321 String!
Swift Wrapped Nullable Int32? String?

The Oxygene Colon (:) Operator

Oxygene pioneered the colon operator to allow safe member calls on potentiallynil variables. C#, Java, Mercry and Swift later took on the same
concept by combining the ? operator with a subsequent dot () for member access.

For example:

var b: Button;
var i = b:title:length; // i is a nullable Int32

Button b;
var s = b?.title?.length; // i is an Int32?

let b: Button?
var i = b?.title?.length // i is an Int327?

Button b;
var i = b?.title?.length; // i is an Int32?

Dim b as Button
DIm i = b?.title?.length ' i is an Int327?

Exposing Wrapped Nullables to Swift from the Other Languages

For the purpose of being able to create APIs in all languages that play well with Swift, the languages provide a way to mark variables awrapped, even
though the languages themselves do not use the concept. If a class type is explicitly marked as "nullable", it will appear as a wrapped nullable when
referred to from Swift:

var b: nullable Button; // already nullable by default, "nullable" makes it wrapped to Swift
Button? b; // already nullable by default, "?" makes it wrapped to Swift
Button? b; // already nullable by default, "?" makes it wrapped to Swift

Dim c As Button? ' already nullable by default, "?" makes it wrapped to Swift
Optional Nullability Warnings in the Other Languages

As discussed above, all nullables in languages other than Swift are consideredunwrapped, meaning they can be accessed without explicit unwrapping,
and they can be assigned to variables that are declared non-nullable - at the risk of generating an NRE) when an actual null value is encountered. This
is of course par for the course for Oxygene, C#, Java and Mercury developers.

When working in those languages with APIs designed for Swift - that is, APIs that make explicit use of nullable and non-nullable type references a lot -
the compiler will optionally emit warnings when assigning potential null values to variables that are declared nullable. This can help you spot potential
NREs at compile time rather than when debugging.

Because in many cases these warnings are noisy and can provide false positives, they can be turned off ilProject Settings via the "Warn on Implicit
Not-Nullable Casts" option. When turned on (the default), warnings will be generated in cases such as the one below:

var b: Button! := ...;
var c: Button;
b := ¢; // warning here, as c might be nil

Button! b = ...;
Button c;
b = ¢; // warning here, as c might be null

Button! b = ...;
Button c;
b = c; // warning here, as ¢ might be null

Dim b As Button! = ...
Dim c As Button
b = c ' warning here, as c might be Nothing

There are two ways to "fix" these warnings and let the compiler know that the assignment is safe, or that the developer is aware of the potential risk of
an NRE. The first is to enclose the assignment in code that ensures the variable is not null in a way that the compiler can detect as part of code flow
analysis, for example with an if statement:

if ¢ # nil then
b := c¢; // no warning here, we know c is assigned

if (¢ '= null)
b = ¢; // no warning here, we know c is assigned

if (¢ !'= null)
b = ¢; // no warning here, we know c is assigned

vb if ¢ IsNot Null Then b = ¢ ' no warning here, we know c is assigned End IF’

The second option is to explicitly "cast" the value to a non-null version. This can be done either by usingype cast syntax with a nullable type name, or
by using a shorthand syntax provided by the language. In C#, the shorthand syntax uses the ! operator, similar to Swift. In Oxygene, theas not nullable
keyword combination, without an explicit type name, can be used:

:= ¢ as not nullable Button; // type-cast to non-nullable type
:= c as not nullable; // convenience shorthand syntax
as Button!; // type-cast to non-nullable type
/I convenience shorthand syntax

c as Button!; // type-cast to non-nullable type
cl; /I convenience shorthand syntax

b
b
b
b
b
b
b
b

DirectCast(c, Button!) ' type-cast to non-nullable type
ch; ' convenience shorthand syntax

Exposing Wrapped nullable to Swift from the Other Languages

When writing APIs in Oxygene, C#, Java or Mercury that will (also) be consumed from Swift, it is sometimes (or rather, often) desirable to expose
nullable types as wrapped nullables on the Swift side.

Even though these languages have no concept of wrapped nullables themselves, reference types (and only reference types) that are explicitly (and, in
a sense, redundantly) marked as nullable in Oxygene and C# will be exported as wrapped nullable when seen from Swift. For example, a type of
nullable String (Oxygene) or String? (C#, Java or Mercury) will appear in Swift as wrapped nullableString?, while a regular nullable String will appear to

Swift as a unwrapped nullable String!.

There is currently no way to expose nullablevalue types as wrapped nullables from Oxygene, C#, Java or Mercury.
Nullability Information in Cocoa SDKs
Starting with the 2015 releases of Apple's Cocoa SDKs, their Objective-C APIs have been annotated with nullability information, marking parameters as

nullable or non-nullable (usually wrapped, in the latter case), where appropriate. This applies to iOS 9.0, watchOS 2.0, tvOS 9.0 and OS X 10.11 and
later.

Elements has full support for these annotations in Objective-C, and carries the nullability of parameters, method results and properties over into the

APIs seen by Oxygene, C# and Silver. Because of this, many APIs are much more expressive and precise when building against the newer SDKs. This
also means that your own code consuming these standard Cocoa APIs might need adjustment for more explicit handling of nullability, for example
when overriding platform methods, or when dealing with return types.

Nullability information is available in the new SDKs'.EX files, and also when importing custom third party libraries withEXGen.
See Also

Value Types vs. Reference Types

Nullable and Non-Nullable Types in Oxygene
Non-Nullable Types in C#

Non-Nullable Types in Java

Non-Nullable Types in Mercury

Warn On Implicit Not-Nullable Cast Compiler option

e o o o o o

Nullable Expressions

All Elements languages allow the use ofNullable Types in standard Arithmetic and Logical Expressions and will automatically propagate nullability to
their result type. So if one element of an expression is nullable, that information will bubble up through the expression tree and the result will be
nullable, too.

When using the Swift language, nullables need to be of theimplicitly wrapped type (i.e.declared with !) to be used directly, or they can be unwrapped
inline with 2.

Consider the following example:
var x: Int32 :=5;

var y: nullable Int32 := 10;
var z: nullable Int32;

vara:=x+y+z

Int32 x = 5;
Int32? y = 10;
Int327 z;

vara=x+y+z

let x: Int32 =5
lety: Int32! = 10
let z: Int32?

leta=x+y+2?;
Int32 x = 5;
Int32? y = 10;
Int32? z;

vara=x+y+z

Dim x As Int32 = 5
Dum vy As Int32? = 10
Dum z As Int327?
Dima=x+y*z

Both y and z are of nullable type. That means that the subexpressionx + y will be promoted to be an nullableint32 as well, it's value will be15. Next,
this value is then added to z, which is not only potentially nullable but in factnil. Regardless ofz’s value, the end result will be a nullable type again,
and because z is nil, the end result, 15 + nil, is nil.

So this code declaresa as a nullable Int32 (solely based on the inputtypes of the expression) and at runtimea will evaluate to nil (because one on ifs
inlut vaklues was nil)

Determining the Type of a Nullable Expression

To determine the type of an expression, the following rules are applied:

1. Initially, the nullability characteristic of the operands is ignored, determining the result base type in the usual way.
2. If any one of the operands is nullable, the result type will be nullable as well.

Consider the following example:

var x: Int32 :=5;
var y: nullable Double := 5.0;

var a := x +y; // 10, a will be a nullable Single

In step one, the base types ofx andy (Int32 and Double) are considered to determine that the resulting expression will also be of typeouble. Then,
because one of the parameters (z) is nullable, the entire result is promoted to anullable Double.

Equality of Nullable Types

The above applies to all operators with only a single important exception: equality comparisons £ and = / <> / !=) always result in a not-nullable
Boolean to preserve the established logic of comparing reference-based values. (Other comparison operators, i.e. <, = > and =, will produce a nullable
boolean as result if one of the operands is nullable, according to the above rules.)

For Example:
var x: Int32 :=5;
var y: nullable Int32 := 5;

var z: nullable Int32;

var a := x =y; // true, a will be a regular Boolean
var b := x = z; // false, b will be a regular Boolean

Determining the Result of a Nullable Expression

When evaluating expressions at runtime, the result will benil, if one or both of the operands isnil; otherwise the result is the determined just as it
would be for non-nullable expressions by applying the operator(s) to the respective values. It is worth noting that a single nil in a complex or nested
expression will "bubble up" and turn the entire expression nil.

Examples (assuming the right-hand operator is a nullable Int32 type):
var x: Int32 :=5;

var y: nullable Int32 := 10;

var z: nullable Int32;

vara:=Xx + z; // = nil

varb:=x+vy;// =15;
varb = (x + z) *y; // = nil;

Notes

e The above rules are specific to nullable types, but do not necessarily apply to custom class based types that implement their own operators. For
example, the + concatenation operator on Strings will preserve the original string when appending anil string via +.
o if, while and until statements will accept nullable booleans, and treatnil as false.

Result Tables

The following tables provide a matrix for how nil and Boolean values interact.
Equality

The following rules apply to the equality & and =/<>/!=) operators:

nil = nil => true

nil = non-nil => false

non-nil = nil => false
non-nil = non-nil => compare value

e o o o

Non-Equality

nil # nil => false

nil # non-nil => true

non-nil # nil => true

non-nil # non-nil => actual values are compared

e o o o

Booleans

Truth table for the not / ! boolean operator

e (nottrue) => false
e (not false) => true
e (not nil) => nil

Truth table for the and / && boolean operator

true and true => true

true and false => false

true and nil => nil

false and true => false — via Boolean Short-Circuit
false and false => false — via Boolean Short-Circuit
false and nil => false — via Boolean Short-Circuit
nil and true => nil

nil and false => false

nil and nil => nil

e © o 0o 0o 0o 0o o o

Truth table for the or / || boolean operator

true or true => true — via Boolean Short-Circuit
true or false => true — via [Boolean Short-Circuit
true or nil => true — via [Boolean Short-Circuit
false or true => true

false or false => false

false or nil => nil

nil or true => true

nil or false => nil

nil or nil => nil

e o o o 0o 0o o o o

Truth table for the xor / ~ boolean operator

true XOr true => false

true xor false => true

true Xor nil => nil

false XOr true => true

false xor false => false

false xor nil => nil

nil Xor true => nil — via Boolean Short-Circuit
nil xor false => nil — via Boolean Short-Circuit
nil xor nil => nil — via Boolean Short-Circuit

@ o o 0o 0 0 0o o o

Note: There is no XOR operator in SQL, which is where the nullable truth tables are based on, however, "A xor B" can be expressed as "not (A and B)
and (A or B)" and the above truth table derived from that.

Truth table for the Oxygene implies boolean operator

e true implies true => true
o true implies false => false

true implies nil => nil

false implies true => true — via Boolean Short-Circuit
false implies false => true — via Boolean Short-Circuit
false implies nil => true — via Boolean Short-Circuit
nil implies true => nil

nil implies false => nil

nil implies nil => nil

® o o o o o o

Boolean Short-Circuit

Boolean Short-Circuit evaluation is possible for the following operators if the left operand has a specific value:
e and/&&: false => false
e or/||: true => true
e xor/”: nil => nil

(Note that xor/~ does not ever short-circuit for non-nullable expressions.)

Platform Specific Mappings
All Languages

Interfaces with a single method

When Elements encounters an interface without ancestor interfaces and with a single method, it's treated as a delegate, making it possible to assign
anonymous methods, method pointers and lambdas to it.

.NET

Tuples
The Oxygene and Swift Tuple types are mapped to System.Tuple<>
ISequence<T>

The ISequence<T> maps to System.Collections.Generic.IEnumerable<T>.

Java

Tuples

The Oxygene/Silver tuple types are mapped to com.remobjects.elements.system.Tuple*.
ISequence<T>

The ISequence<T> maps to System.Collections.Generic.IEnumerable<T>.
Properties

Java does not natively have the concept of properties, when Elements encounters a get/set pair with matching name and type they're treated as a
property. See Property Matching

Cocoa

Tuples

The Oxygene/Silver tuple types are mapped to RemObjects.Elements.System.Tuple*.
ISequence<T>

The ISequence<T> maps to RemObjects.Elements.System.INSFastEnumeration<T>.
Properties

Cocoa does not have the concept of static properties, when Elements encounters a static get/set pair with matching name and type they're treated as
a property. See Property Matching

Property Matching

Java has no built in property support but instead uses conventions, while Cocoa does support properties but only on class instances, not static ones.
When the compiler here finds a matching pair it turns them into a property.

For example on Java:
class MyClass
{

void setValue(String s);
String getValue();

becomes accessible as a read/write instance property on the classinstance.Value. Java uses a convention of "get" and "set" methods, followed by a
capital letter. Cocoa uses a selector with just the property name as the getter, and setPropertyName for properties:

+(void)setValue(NSString* val);
+(NSString)value();

Like above becomes a property called Value.

Note: The original get and set methods can still be called, the property accessor is just an easier way to use this class.
When the getter or setter has more parameters they are matched and become an "indexer" property:
class Bundle
void setString(String key, string value);
) String getString(string key);

This can be accessed as a read/write indexer property:instance.String["key"].

Property Notifications

Property Notifications allow your code to automatically get notifications when a certain property of a type has changed, and to react to this change
with a callback.

Property notifications are provided at system level by each platform, but Elements also provides a platform-agnostic way to work with them in shared
code.

Using property notifications involves three steps:

1. Enabling individual properties to emit change notifications
2. Subscribing to observe changes to a property
3. Handling the callback when actual changes occur

Enabling Properties to Emit Change Notifications

Turning on notification for a property could not be simpler. Simply adding thelNotify] aspect to the property, or - onOxygene - using the notify keyword
instructs the compiler to emit all the necessary boiler-plate code under the hood to enable notifications when the property changes:

type
Foo = public class
public
[Notify] property MyProperty: String;
property MyProperty2: String; notify;
end;

public class Foo

[Notify] public String MyProperty { get;set; }

public class Foo {

@Notify var myProperty: String!
}

public class Foo {

@Notify public String myProperty { _get; _ set; }

Notifications use the string value of the property name. You can optionally provide a different name to theNotify] aspect, if you want changes to the
property emit notifications under a different name.

Subscribing to Observe Changes

The easiest way to subscribe to change notifications is to use theobserver class in Elements RTL. An observer expects a target object and property
name, as well as at least one Block parameter that will be called when the property changes:

var fFoo := new Foo;

var fObserver := new Observer(IFoo, "MyProperty") begin
writeLn("property changed!");

end;

var foo = new Foo()

var observer = new Observer(foo, "MyProperty") {
writeLn("property changed!");

}

let foo = Foo()

let observer = Observer(foo, "myProperty") {
writeLn("property changed!");

}

var foo = new Foo();

var observer = Observer(foo, "myProperty", () => {
writeLn("property changed!");

b

To avoid hardcoding the property name as string literal (and the potential for typos that comes with it), theaameOf() system function can be used to
obtain the type-safe name of the property at compile time:

new Observer(IFoo, nameOf(IFoo.MyProperty) ...
new Observer(IFoo, nameOf(foo.MyProperty) ...

new Observer(IFoo, nameOf(foo.myProperty) ...

new Observer(IFoo, nameOf(foo.myProperty) ...

The block will be called after the property has been changed, this is referred to as the "did change" callback. Optionally, a "will change" callback may
be provided as well; this block will be called before the property changes.

"will change" callbacks are only supported on.NET, Cocoa and the Island-backed platforms. On Java, the Observer API allows passing the second
callback to maintain APl compatibility, but it will never fire.

Note the that optional "will change" block is the third parameter of theObserver constructor, and comes before the (non-optional) "did change" block

parameter.

Handling the Callback

Every time the property in question has changed (or will change), the appropriate callback will be fired. The property will be unchanged (i.e. have its
old value) in the "will change" callback, and it will have its final new value (including any adjustments made by the property setter) in the "did change"
callback.

Note that the callback(s) will still fire every time the property is set, even if its actual value might not have changed.

Platform Details

On .NET, Android, Java and thelsland-backed platforms, the [Notify] aspect or keyword will automatically implement theiNotifyPropertyChanged interface,
and except on Java it will also implement INotifyPropertyChanging.

On .NET and Island, these are system-level interfaces defined in the standard .NET Framework library odsland RTL, respectively. These interfaces work
very similar on both platforms, declaring a single Event member that can be subscribed to for change notifications.

On Java, INotifyPropertyChanged is defined in cooper.jar, and wraps together the Java-standardaddPropertyChangeListener and removePropertyChangeListener
methods, as described here.

On Cocoa, notify implements the standard Key-Value Observation infrastructure of the Objective-C runtime.

The source code for the Observer class is available on Github and provides an illustration for how the platform-specific notification subscription works.

See Also

e Observer class in Elements RTL

o notify keyword on Oxygene Properties.
e Notify Aspect

Using, IDisposable & Finalizers

The Disposable Pattern, centered around thelDisposable interface, can be used to add deterministic disposal of resources that are not managed by the
platform's memory allocation system (be it the garbage collector or reference counting). This typically includes non-memory resources such as file or
network handles, database connections, or operating-system-level objects such as locks, window handles, or the like. On the Island-backed platforms
and on Cocoa it could also include manually allocated memory, such as from calls tomalloc().

The IDisposable interface is available on an platforms, and defines a single required methodpispose. The implied contract is that when allocating any
class that implements IDisposable, the Dispose method must be called (explicitly or implicitly, more on that later) when the class is done being used.

After the call to Dispose, the instance should be considered disposed, and no further calls to its members should be performed (unless otherwise
documented as safe).

The implementation of Dispose will take care of releasing any resources held by the class that might need explicit disposal.

The Using Pattern & IDisposable

A common pattern for disposing short-lived (i.e. within the scope of a single method) objects is to theusing (or __using, in Swift and try in Java)
statement.

A using statement combines the declaration of a local variable that's limited in scope to the statement(s) contained within thaising with an automatic
call to Dispose at the end.

It serves two purposes: for one, because the local variable is limited in scope, accidental calls to it after disposal are prevented. For anothemsing
automatically checks if the instance in question actually implements IDisposable, at runtime, and if so calls it in a way that is protected from exceptions:

using s := new FileSteam(...) do begin
// work with the stream
end;

using (s = new FileSteam(...))
{
// work with the stream

}

__using s = FileSteam(...) {
/I work with the stream

}

try (var s = new FileSteam(...)) {
// work with the stream

}

The using statement roughly translates to the following manual code:

var s := new FileSteam(...);
try

// work with the stream
finally

(s as IDisposable):Dispose;
end;

var s = new FileSteam(...);
try

// work with the stream
}
finally
{
IDisposable(s)?.Dispose();
}

let s = FileSteam(...)
defer {

(s as? IDisposable)?.Dispose()
}

// work with the stream

var s = new FileSteam(...);
try

// work with the stream
}
finally
{
if (s is IDisposable)
IDisposable(s).Dispose();
}

s := FileSteam { ... }
defer func () {
disposable, isDisposable := i.(sDisposable)
if (isDisposable) {
disposable.Dispose();

}
10
/l work with the stream

Finalizers

Finalizers are a secondary fall-back mechanism to free resources held by an object, iDispose was not called properly (or if the class in question does
not properly implement IDisposable). Finalizers are called when the last reference to an object is released (under ARC), or when the object is claimed by
the garbage collector (under GC).

Note that under GC, the presence of finalizers adds extra cost to the deallocation and may cause instances to stay in memory longer and until a later
GC cleanup than they would normally be cleaned away under. So it is always preferable to properly dispose of instances using the IDisposable pattern.

On the Cocoa platforms, including Cocoa object model classes onlsland, Finalizers map to thedealloc method (or deinit, in Swift terms).

Suppressing Finalizers from Dispose

On .NET and Island, it is possible for theDispose method to mark the current instance as disposed and forgo the overhead associated with a redundant
call to the finalizer. This is achieved by calling the GC.SuppressFinalize (.NET) or Utilities.SuppressFinalize (Island) method.

Platfrom-specific Mappings

On .NET, IDisposable is defined by the base .NET Framework library.

On the Island-backed platforms, IDisposable is defined in Island RTL.

On legacy Cocoa. IDisposable is defined in the Toffee Base Library.

On Java, IDisposable is defined in the Cooper Base Library as a reverse-mapped interface to the standardAutoCloseable interface.

e o o o

See Also

Finalizers in Oxygene

IDisposable (.NET)

IDisposable (Island)

IDisposable (Cocoa)

IDisposable (Java)

using Statements in Oxygene
using Statements in Swift

Object.Finalize Method (.NET)

Understanding when to use a Finalizer in your .NET class(.NET)
AutoCloable and how to use it (Java)

e o o o 0o 0o 0 0o o o

Platforms

The Elements compiler supports building (compiling) projects for several different platforms.

Since Elements' main focus is to leverage the existing platforms it supports, it does not come with an extensive runtime library, class framework or a
"platform" of its own - in contrast to many other "cross-platform" development tools that try to abstract platform differences under a new meta-
platform.

When using Elements on.NET, Cocoa, Android and Java, the class libraries you work with are those provided by the platform vendor, as well as any
free, open source or commercial third-party libraries available for the platform (RemObjects Software even creates some of those as well, independent
of Elements). On the lower-level native target, you work directly against the low-level platform APIs (such as the Win32/Win64 API, or the core
Linux/Unix "C" APIs), and Elements' own core RTL.

The following links dive into detail on each of the supported platforms (or platform groups):

.NET, including ASP.NET, .NET Core, and Mono

Build managed projects that can run on the Common Language Runtime (CLR), including the "full" Microsoft .NET Framework, ASP.NET, .NET Core,
Silverlight, Universal Windows projects and Mono/Xamarin. It is a great platform for building Windows GUI applications, as well as cross-platform
servers and command line tools.

Cocoa, for Apple's macOS, iOS, iPadOS, tvOS and watchOS

Build native applications for the Apple platforms, using the high-level Cocoa APIs and Frameworks such as AppKit or UIKit. It is the recommended
target for building apps for macOS, iOS, iPadOS, tvOS and watchOS, and can also be used for building macOS command line tools and other projects.

Android, both SDK and NDK

Build applications for the Android platform, with access to both the regularAndroid SDK as well as the Android NDK for native extensions.

ava

Build projects that compile to Java byte code and can run anywhere that the Java Virtual Machine (JVM) is supported, including Java SE, Java EE and the

Open)DK.

Windows (native)

Build CPU-native Windows projects against the Win32 API. — Supports 64-bit (x64) and 32-bit (i386) Windows.

Linux (native)

Build CPU-native Linux projects against the Linux/POSIX APIs mdash; Supports 64-bit Intel (x64_64) and both 32-bit and 64-bit ARM (armv6, aarch64).

WebAssembly

Build WebAssembly modules that can run in the browser and interact with JavaScript code and the HTML DOM.

Cross-Platform Development

Elements supports many platforms, but it is decidedly focused on creating apps for multiple platformsnot single one-size-fits-all cross-platform apps.
The following links dive into this distinction and cross-platform development considerations in general:

o About Cross-Platform Development
e Cross-Platform Mode

e Elements RTL

.NET

Elements can build applications for the Common Language Runtime (CLR). Most prominently this includes the Microsoft .NET
Framework, but also extends to .NET Core, Universal Windows Apps (the new API layer for Windows 8, Windows 10 and Windows RT
applications), Windows Phone, Silverlight and the open-source Mono framework, which brings the CLR to Mac OS X, Linux and a
range of other operating systems.

The CLR is designed to be language independent, making Oxygene, RemObjects C#, and Swift, Java and Go first degree citizens

next to Microsoft's Visual C# and Visual Basic.NET languages. In fact, Oxygene is the most prominent and most widely used non-
Microsoft language available for .NET.

Sub-Platforms

The ".NET" moniker (and the Echoes compiler back-end targeting it) covers several different implementations of the Common Language Runtime:

e .NET Core (Including .NET 5.0 and later)

e .NET Framework (.NET 4.8 and below)

¢ Mono

e Xamarin

e Compact Framework (deprecated)

e Silverlight (deprecated & Visual Studio 2015 only)

Note that while still being supported for a long time, the current version 4.8 makes the last version of the traditiondlDesktop" .NET Framework, and
will be superseded by version 5.0 of the .NET Core runtime, as of Fall of 2020. It is recommended to use .NET Core rather than classic .NET for new
projects.

Additional Topics

e Debugging .NET Projects
e Deploying and Shipping .NET Projects

Framework and Technologies

On top of .NET and the CLR, a wide variety of technologies are available for building great applications. .NET comes with an extensivéramework Class
Library (FCL) of over 10,000 classes and types that are instantly usable from Oxygene and RemObjects C#, not to mention a wide range of open
source and commercial third party libraries that are available and work seamlessly with any CLR language, including Oxygene and RemObjects C#.
(RemObjects Software even provides a few of its own, such as Data Abstract.)

Depending on your target platform, the CLR provides a choice of GUI frameworks for creating powerful native applications, including WPF and
WinForms for Windows Desktop apps, XAML for WinRT/Metro and Windows Phone apps, and XAML/Silverlight for creating plugin-based web apps.
Oxygene supports all of these frameworks and their toolchains natively and out of the box.

On top of that, the .NET Framework also contains classes for just about any business need, from internet communication to working with XML files,
from database access to encryption, and so on.

Compiler Back-ends

e Echoes

.NET Core

.NET Core is the next generation of the Common Language Runtime from Microsoft, and will replace theclassic ".NET Framework 4.8" runtime with
version 5.0 and later as of Fall of 2020,

.NET Core is fully open source and supported on Windows, macOS and Linux. Elements fully supports creating projects for all parts of the .NET Core
ecosystem.

An Elements project is determined to target the .NET Core runtime if its Target Framework" Project Setting is set to a value starting with the
".NETCore", optionally followed by a version number, of if it set to.NET or .NETFramework and the explicit version number is equal or higher thans.0.

Versions

.NET Core comes in different SDK versions, which can be installed in parallel on the same system. Projects will always target a specific SDK version - by
default the newest SDK version installed on the build system.

You can select a different version of .NET Core to target with your project by setting the Target Framework" project setting to a concrete number,
e.g. ".NETCore3.0" instead of just ".NETCore"

Runtimes

.NET Core supports three different runtimes:

e Microsoft.NETCore.App
e Microsoft. ASPNETCore.App
* Microsoft.WindowsDesktop.App

The first two runtimes are truly cross-platform and available everywhere .NET Core runs, including Windows, macOS and Linux. The first runtime is
used for general application projects - from console applications to services and server tools, while the second one is used for web applications using
the ASP.NET Core web frameworks.

The Microsoft.WindowsDesktop.App runtime is only available on Windows, and can be used to build GUI applications using WinForms and WPF. It is the
closest analogue to the soon-to-be-deprecated classic .NET Framework 4.x.

Elements supports building projects targeting Microsoft.WindowsDesktop.App in Fire on Mac, but you will not be able torun them.
Runtime Versions and SDKs

You can select a specific runtime version to target, by changing the Runtime Version (.NET Core)" setting, but typically it is recommended to leave
this setting alone and let the build chain pick the appropriate runtime version based on the selected "Target Framework" setting.

.NET Core comes with various SDKs. You can explicitly pick an SDK and version by changing the SDK (.NET Core)" and "SDK Version (.NET Core)"

settings, but once again it is recommended to leave these set to empty/default and let the build chain choose the appropriate SDK and version (based
on the selected Runtime).

References

Different than on the classic .NET Framework, all system references are not represented by direct references tadlls such as mscorlib.dll, System.dll or the
like. Instead, system references are provided by a system NuGet Package. Which base package is appropriate depends on the selected runtime and
version, and the build chain will add the correct reference automatically, shown in the IDE as "Implicit".

Your projects will only need explicit references to non-standard, optional NuGet Packages or local .NET Core or .NET Standarddllis that your project
might need.

Executables
Different than the classic .NET Framework, .NET Core application projects with an output type oExcutable or WinExe do no compile to an.exe file that
contains IL code (and could be run directly on Windows). Instead, they compile to a .dll that contains the IL code and a platform-specific CPU-native

stub binary (.exe on Windows, and extension-less on Mac and Linux) that can be run directly locally, whether you are building on Windows, Mac or
Linux.

Compiler Back-ends

e Echoes

.NET Framework (Classic)

The "Classic" .NET Framework refers to versions 4.8 and earlier of the standard Microsoft .NET Runtime that ships with Windows, and isot based on
.NET Core. .NET Framework 4.8 is tha last version of this runtime that was shipped, and .NET 5.0 and later are based on .NET Core instead.

An Elements project is determined to target the .NET Core runtime if its Target Framework" Project Setting is set to a value starting with the "NET"
pr ".NETFramework", optionally followed by a version number that ius4.8 or lower..

Versions

Between 2000 and 2020, Several versions of the .NET Framework ships. By default, new projects target the latest version installed on the
development machine.

The following versions of the Classic .NE Framework exist. Elements supports compiling for .NET Framework version 2.0 and higher, although some
language features will require version 4.0 or higher.

4.8
4.7.x
4.6.x
4.5
4.0
3.5
2.0

1.
1.

® o o 0o 0 0 0 o o

1
0
You can select a different version of .NET Core to target with your project by setting the Target Framework" project setting to a concrete number,
e.g. ".NETFramework4.5" instead of just ".NETFRamework".

In lieu of a "Target Framework" setting, the legacy 'Target Framework Version" setting might also be used to specify a version.
Compiler Back-ends

e Echoes

Debugging

Elements comes with integrated support for debugging for .NET, .NET Core and Mono projects. Debugging for most project types is supported locally
on Mac and Windows, from Fire, Water and Visual Studio.

Note: The (classic) .NET Framework is only available on Windows. When usingFire on a Mac, .NET projects will always be run under the Mono
runtime. When using Water on Windows, you can choose whether to use Microsoft's Common Language Runtime or (if installed) the Mono runtime to
debug your .NET projects. (Debugging from Visual Studio will always use Microsoft's Common Language Runtime implementation.)

.NET Core projects will use the .NET Core runtime (which might require a separate install), on all platforms.

Also note that not all .NET project types can be run on non-Windows platforms. For example, Support for WPF and WinForms is not available or
severely limited on macOS and Linux.

Read more about:

Debugging .NET Core Projects

Debugging ASP.NET Core Projects

Debugging Classic .NET Framework Projects on the .NET CLR(Windows only)
Debugging Classic .NET Framework Projects on Mono(on Windows and Mac)

e o o o

Potentially additional Setup

e Installing Mono for use in Fire on the Mac

e Installing Mono for use with Water on Windows

o Installing .NET Core for use in Fire on the Mac

e Installing .NET Core for use with Water on Windows

See Also

e Debugging in Fire and Water
e Debugging in Visual Studio

.NET Core

To run and debug .NET Core projects, you need to have the .NET Core runtime installed. You can typically check if .NET Core is installed by running the
dotnet command in Terminal/Command Prompt.

The IDEs will automatically find the installed .NET Core runtime in its default location. The following topics will help you set up .NET Core, if needed.
e Setting up for .NET Core Development with Fire on Mac

e Setting up for .NET Core Development with Water on Windows
e Visual Studio 2019 or later automatically install support for .NET Core 3.0 or later

Launching

The IDEs will automatically take care of launching your project via thedotnet runtime environment.
Debugging

Once your your application is launched, you can debug your code the same as you would any other project. For example, you can seBreakpoints to
pause execution when a certain part of your code is hit, and you will automatically "break" into the debugger, if any Exception occurs.

See Also

o Debugging with Fire and Water
e Debugging with Visual Studio

e Project Settings

ASP.NET Core

To run and debug ASP.NET Core projects, you need to have the .NET Core runtime installed. You can typically check if .NET Core is installed by running
the dotnet command in Terminal/Command Prompt.

The IDEs will automatically find the installed .NET Core runtime in its default location. The following topics will help you set up .NET Core, if needed.

o Setting up for .NET Core Development with Fire on Mac
e Setting up for .NET Core Development with Water on Windows
o Visual Studio 2019 or later automatically install support for .NET Core 3.0 or later

Launching

Fire and Water provide extra support to assist especially with ASP.NET Core debugging.

When launching your project, the IDE looks for a file calledlaunchSettings.json and uses its content for determining the best course of action for
launching.

In particular, it will look at several values from the first profile" entry with a commandName of 'Project". The environment variables specified in this json
block will be passed to the debugged process, in addition to those specified in the Environment Variables Manager.

One or more application URLs can be specified (as semicolon-separted list), and they will also be passed to the process, and determine on which ports
and under which protocols the web server will launch. Note that running the server as secure HTTPS might need some additional setup in the project,
see Enforce HTTPS in ASP.NET Core in Microsoft's documentation for .NET Core.

On first launch, Fire or Water will also automatically offer to launch the URL provided inaunchurl in the default browser, if the launchBrowser setting is
true. If launchurl is a relative path, it will be appended to the first URL inapplicationUrl.

On subsequent restarts (within the same IDE session), this will be skipped, to avoid opening many redundant browser tabs or windows.
"profiles": {

;'WebAppIicationl": {

"commandName": "Project",
"launchBrowser": true,
"launchUrl": "weatherforecast",
"applicationUrl": "https://localhost:5000;http://localhost:5001",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"
}
}

Note that in addition to the above steps, the debugger is hardwired toalways provide the ASPNETCORE_ENVIRONMENT=Development environment variable,
whether provided in launchSettings.json or not.

Debugging

Once your your ASP.NET Core application is launched, you can debug your code the same as you would any other project. For example, you can set
Breakpoints to pause execution when a certain part of your code is hit, and you will automatically "break" into the debugger, if anyException occurs.

Note that as a server project, ASP.NET Core projects run headless, and provide no direct user interface (aside from informational messages in the
Debug Console. You will test your application by interacting with it from a web browser window, or a separate client application that would make
requests to it.

See Also

Debugging with Fire and Water

Debugging with Visual Studio

Deploying ASP.NET Core

ASP.NET Core in Microsoft's documentation

Enforce HTTPS in ASP.NET Core in Microsoft's documentation

Classic .NET

On Windows, (non-Core) .NET projects by default will run on Microsoft's Common Language Runtime (CLR), which ships preinstalled with every version
of Windows since Windows XP Service Pack 2.

e o o o o

No additional setup steps should be needed on most systems, but youcan install additional, older or newer versions of the .NET Runtime and the CLR,
as needed. The latest (and last) version of the CLR is .NET Framework 4.8.

The IDEs will automatically find the best installed version of the CLR for you.

Note that on Mac,debugging always uses the Mono Runtime, instead.

Launching

Both Water and Visual Studio will automatically use the Common Language runtime for launching (non-Core) .NET projects on Windows. (In Water, you
can choose between using Microsoft's Common Language Runtime or Mono, by setting the Debug Engine in Project Settings to CLR (the default) instead
of Mono.)

Debugging

Once your your application is launched, you can debug your code the same as you would any other project. For example, you can seBreakpoints to
pause execution when a certain part of your code is hit, and you will automatically "break" into the debugger, if any Exception occurs.

See Also

e Debugging with Fire and Water
o Debugging with Visual Studio

e Debugging on the Mono Runtime (Fire and Water only)
e Project Settings

Mono

To run and debug .NET projects on Mac, or to explicitly test against the Mono runtime on Windows, you need to have the Mono runtime installed. You
can typically check if Mono is installed by running the mono command in Terminal/Command Prompt.

With a default installation, the IDEs will usually find the Mono runtime automatically, but the following topics will help you set up Mono or point your
IDE to a custom Mono install:

e Setting up for Mono Development with Fire on Mac
e Setting up for Mono Development with Water on Windows

Launching

Fire will automatically use the Mono runtime for launching (non-Core) .NET projects on the Mac. In Water, you can choose between using Mono or
Microsoft's Common Language Runtime (the default), by setting the Debug Engine in Project Settings to Mono instead of CLR.

Debugging with the Mono runtime is not supported fromVisual Studio.
Debugging

Once your your application is launched, you can debug your code the same as you would any other project. For example, you can seBreakpoints to
pause execution when a certain part of your code is hit, and you will automatically "break" into the debugger, if any Exception occurs.

See Also

e Debugging with Fire and Water

e Debugging on the .NET CLR(Windows only)
e Project Settings

Deployment

This section collects information about deploying applications created with the .NET edition of Elements, in various scenarios.

e Creating a NuGet Package
o Deploying ASP.NET Websites

Creating a NuGet Package

Elements allows you to create a NuGet Package from your project, to deploy a class library for use by other members of your team or the general
public.

To have your project build to a NuGet Package (a zip file with thenupkg extension), simple enable the 'Create NuGet Package" option in Project
Settings.

The Create NuGet Package option is only available on project level (not per individuallTarget), and that is because the a package is always built from
the entire project and combines all (potential) Targets into one.

In order to qualify for a NuGet package, the project must be

e Single-target (the norm) or Multi-target.
e Every target must be a.NET (Echoes) project (for now).
o Every target must have have anOutputType of "Library".

If these criteria are not met, the project build will fail with an error.

Configuring The NuGet Package

Once the Create NuGet Package option is set to True/YES, additional settings can be used to configure your package:

PackageName - the name (and "ID") of your package. Defaults to the AssemblyName/BinaryName

PackageVersion - the version of your package. Defaults to the AssemblyVersion, if set.

PackageAuthors - a human-readable string that describes the author(s) of the package

PackageTags - a list of tags to heklp users find your package

PackageProjectUrl - URL to a public website that describes the package or the product/project it is part of.

PackagelconUrl - URL tom a public icon image for your package.

PackageLicenseUrl - URL to a public web page that shows the license for yur package.

PackageDescription - a human-readable description of your package.

PackageReadMe - a Markdown (.md) file that is aprt fo your project and provides a mlore detailed description of the package.

e o o o o 0 0o o o

Note that all the produced URLs are merely informational, and will be included as part of the packages metadata. They will not be
downloaded/accessed during build. All values are optional, but you will want to make sure you set a valid PackageVersion.

If no PackageVersion or AssemblyVersion is set, EBuild will obtain the assembly version from the main deliverable of thefirst target - assuming
that a version has been set by other means, such as the [AssenblyVersion] attribute, or otherwise fall back to 0.0.0

Multi-Target Packages

As mentioned above, a multi-target project can be built into a single NuGet package, providing a unified distribution of a library for different .NET
Target Frameworks (such as Classic, .NET Core, or .NET Standard).

For this to work, each target must have aunique target platform name and/or version. For example, yu might have three targets, with
TargetFramework set to .NET 4.8, .NETCore 7.0 and .NET Standard 2.1 (for instance).

You could also have targets for different versions of thesame TargetFramework, for example .NET Core 3.0, .NET Core 5.0 and .NET Core 7.0.

During build, EBuild will compile each target individually, as it always does. When it comes to packaging, it will then combine the output of all Targets
into the single package, with the .nuspec XML file containing metadata (such as dependencies) for all targets, and each targets built output going into a
unique folder within the package structure, named after its TargetFramework.

Deploying ASP.NET Websites

There are essentially two options for deploying ASP.NET websites created with Oxygene or Swift to a server: Installing the Elements compiler on the
server, or deploying the website as pre-compiled .dlI(s).

Installing Elements On the Server

If you simply upload your website to the server and try to access it, you will most likely be greeted by an error message stating thatOxygene' is
not a supported language" or "Silver' is not a supported language".

This is somewhat expected, as a copy of the Elements compiler is required on the server in order to compile the .pas or .swift files and the snippets
inside your .aspx files, as needed. There are two ways to achieve this:

Running the Elements Compiler Setup
If your ISP gives you the ability to run and install custom software, the easiest and quickest way to get Oxygene installed is to use the Oxygene
installer and uncheck all options. This will install all the binaries required to use Oxygene or Swift with ASP.NET, and it will register the Elements

compiler with the global machine.config file so that ASP.NET can find it.

After installation, your Oxygene- or Swift-based ASP.NET website should "just work".
Deploying the Elements Compiler as Part of Your Website

Alternatively, you can also upload the Elements compiler to your web space as part of your website. This comes in handy when using an ISP that does
not let you run custom installers, for example when using a shared server. This method of deployment can also be helpful if you want to use different
versions of the compiler for different websites on the same server (for example to test a new version of your site, which might leverage newer
features, without affecting other sites on the same server).

You can even combine the two deployment methods — install a global copy of the compiler using the command line installer, which will be used by
default, and configure individual websites to use a different version, deployed as part of the individual site.

There are two simple steps involved in deploying the Elements compiler as part of your website:
One, deploy the following .dll files (which can be found in the.\Bin folder of your local Elements install) to the./Bin folder of your .ASP.NET web site:

RemObjects.Oxygene.dll

RemObjects.Oxygene.AspAppDomainHelper.dll
RemObjects.Oxygene.Code.dl|

RemObjects.Oxygene.Echoes.dll

RemObjects.Oxygene.Tools.dll

RemObjects.Elements.Cirrus.dll

Echoes.dll — Only on .NET 4.0, and only required if you use types.

e ® o o o o o

These .dlls would simply go next to any custom or third-party assemblies your website might already be using.

Two, add the following compiler section to yourWweb.config file in the root of your web site, where you replace 1.0.0.0" with the exact version of Elements
you are deploying (for example "8.0.81.1667", for the December 2014 release). If you don't have aWeb.config file yet, you can create a new one with full
snippet below:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.codedom>
<compilers>
<compiler language="0xygene"
extension=".pas"
type="RemObjects.Oxygene.CodeDom.OxygeneCodeProvider, RemObjects.Oxygene.Tools, Version=1.0.0.0, Culture=neutral, PublickeyToken=3df3cad1lb7aa5098" />
<compiler language="Silver"
extension=".swift"
type="RemObjects.Elements.CodeDom.SilverCodeProvider, RemObjects.Oxygene.Tools, Version=1.0.0.0, Culture=neutral, PublicKkeyToken=3df3cad1b72a5098" />
</compilers>
</system.codedom>
</configuration>

Pre-Compiled Deployment

Another way to deploy your project is precompiled into .dlls. Because all the compilation happens on your development machine and no .pas files will
need to be updated on the server, this option does not require the compiler to be present on the server machine at all. You can simply upload your
.dlls, and your website is good to go.

.NET Framework Class Library

The Framework Class Library (FCL) is the standard set of types required to run .NET applications and is included with the .NET framework.

These types are spread over several assemblies and in different namespaces. The most important namespace is theSystem namespace, which
contains the classes for base types like Int32, Int64, Double, String and Char. The System.Collections and System.Collections.Generic namespaces contain
structures like lists and dictionaries, which are essential for application development.

Other namespaces include the System.l0 for reading and writing to files and other streams,System.Net for socket support or System.Reflection for reading
and generating assemblies on the fly, and so on.

External Links

o .NET Core, Official Documentation
e .NET Classic, OfficialDocumentation

Further Reading

The Further Reading section collects topics on various concepts and technologies that are relevant to theNET platform, but beyond the scope of
being covered exhaustively on this documentation site, because they are not specific enough to Elements.

The topics are provided because other pages on this site refer to them, and generally, the topics will provide a short summary or overview of the
concept or technology, and then provide pointers to external places that explore the matter in more detail.

Topics are listed in alphabetical order.
e P/Invoke

¢ Unmanaged Exports
o Unsafe Code

Also on This Site
Platform-Relevant Topics Elsewhere on this site:

o Garbage Collection (GC) and ARC vs GC

P/Invoke

P/Invoke is a technology part of the .NET runtime that allows managed code to interact with platform-native libraries such as Win32 APIs or custom
libraries written in languages such as C.

Elements supports P/Invoke via the external (Oxygene), extern (C#) and __external (Swift) keywords and Dllimport attribute.
See Also
e Dllimport attribute

e Platform Invoke Tutorial

o Java Native Interface (Java)

Unmanaged Exports

.NET projects can choose to export individual static methods to be available as standard native .dll entry points that can be accessed by unmanaged
code such as C/C++ or Island/Windows, by applying the UnmanagedExport aspect.

Unmanaged Exports are a feature provided by the Elements compiler.

See Also

e UnmanagedExport Aspect

Unsafe Code

While as a managed platform code on .NET is normally inherently type safe, a specialuUnsafe Code option can be enabled to allow the writing of code
that can do more direct (and unsafe) operations, such as direct memory manipulation via pointers.

Here, "Unsafe" means that the code cannot be verified by the runtime, ands thus could lead to more severe crashes than regular code. For this reason,
unsafe code may not be allowed in all execution contexts (such as for example for code hosted in SQL Server, or when running apps from a network
drive). Unsafe code does not have any other speed or runtime consequences.

In order to use unsafe code, the"Allow Unsafe Code" Compiler Option need to be enabledand each method that uses unsafe code must be marked
with the unsafe modifier, available in Oxygene and C#.

In C#, the unsafe keyword is also required on the class itself, if it contains fields or properties of unsafe (e.g. pointer) types. In Oxygene, this is not
required.

Alternatively, the "Allow Unsafe Code Implicitly" Compiler Option can be set, for a project to enable unsafe code everywhere, without marking
individual types or methods with the unsafe keyword. This is recommended only for projectds that use avast amount of unsafe code though-out.

To use unsafe code, apply theunsafe keyword:

type
MyClass = public class
private
fData: " Byte;
public
method WorkWithData; unsafe;
begin
fData” := fData”™ + 1;
end;
end;

public unsafe class MyClass
private byte *data;
public unsafe void WorkWithData()
*data = (*data)+1;

}
}

Support for unsafe code is currently only available in Oxygene and C#.

See Also
e "Allow Unsafe Code" Compiler Option

o unsafe Member Modifier in Oxygene
e unsafe keyword in C#

Cocoa

Elements lets you create applications for the Apple platform - macOS, iOS, iPadOS, tvOS and watchOS - using the Cocoa frameworks
and the Objective-C runtime as well as native Island APIs.

e macOS - Intel and Apple Silicon

e [0S & iPad0OS

e tvOS

e visionOS

e watchOS

e Mac Catalyst — build iOS and iPadOS apps so they can run on macOS.

Elements ships with a wide range oftemplates to help you get started with your projects for all of Apple's operating systems. You caDebug your
applications locally on your Mac or device, or remotely (when developing on Windows in Water or Visual Stuidio).

See below for links to help you get set up for Cocoa development.

Toffee vs. Island

The Elements compiler has twocompiler back-ends that support building Cocoa projects.

o The Toffee compiler is the current default back-end for Cocoa projects, and it directly and exclusively targets the Objective-C runtime that is the
backbone of Apple's platforms. Binaries compiled with Toffee will be virtually indistinguishable from those created with Apple's Clang compiler for
Objective-C.

e The Island/Darwin back-end allows you to mix Objective-C code with Elements' own object model (shared between all the Island-backed
platforms) as well as (in the near future) the new Swift object model.

You can read more about the two back-ends, and which one is the right choice for you, in th&offee vs. Island/Darwin topic. If in doubt, use the default
Toffee backend.

Supported SDK Versions

Elements for Cocoa is designed to be able to work with any version of Apple's SDKs. The product ships with support for the SDKs that are officially
released at the time an Elements release RTMs, but pending any drastic and unexpected changes to the tool chain for Apple's SDKs, you can import
newer or beta SDKs using the EXGen tool that is included in the product, even if we have not gotten around to supporting them officially yet.

We usually do try to support new SDK versions, including Betas, within days, and when we do, Elements will download them for you automatically,
even without you having to install a new version. You can also manually download SDKs here.

You can also download older SDK versions that shipped with the product, from the URL above, in case you need to work directly with older Xcode
versions. However, we generally do recommend using the latest shipping version of the SDKs, and leverage Deployment Targets in order to keep your
apps running on older OS versions.

Getting Set Up

In addition to Elements itself, you also need a Mac with Xcode installed. Please follow the links below top learn how to get set up, if you're not familiar
with the Apple tool chain:

o Setting up for Cocoa Development with Fire on Mac
e Setting up for Cocoa Development with Water on Windows
e Setting up for Cocoa Development with Visual Studio on Windows

If you work in Water of Visual Studio on Windows, some build phases will run remotely over the network, on a Mac:

e Building Remotely from Windows

Additional Topics

Introduction to the Frameworks

Working with XIBs and Storyboards for Ul Design
Automatic Reference Counting (ARC) and ARC vs GC
Storage Modifiers

Debugging Cocoa Projects

Deploying and Shipping Cocoa Projects

e o o o o o

External Resources

These external links point to great resources on Cocoa development (not specific to, but applicable to Elements) across the web:

e developer.apple.com
e NSHipster
o Friday Q&A by Mike Ash

Compiler Back-ends

o Toffee — current default back-end
e Island/Darwin

Introduction to the Frameworks

The Cocoa platform is now represented by four separate flavors, or sub-platforms, with themacOS, i0OS/iPadOS, tvOS, visionOS, watchOS and SDKs.
Each SDK is made up of individual libraries usually referred to as "Frameworks".

On the Objective-C side, each framework is a bundle with the.framework extension that contains both binary (dylib, which is comparable to.dil on
Windows) and Objective-C header files. For Elements, each framework in the SDK is represented by a .fx file that aggregates all the metadata from the
headers to make them easier and faster for the Elements compiler to consume.

Elements comes with pre-created .fx files for all frameworks in the standard Apple SDKs that ship with the latest versions of the four SDKs (as well as
for select older versions).

You can find a complete list of all frameworks in the lists below. You will see that many of the frameworks are shared by some or even all SDKs,
providing a vast library of classes that let you write code that can be compiled for and shared between all sub-platforms, while each SDK also provides
a significant number of frameworks that are platform-specific.

All macOS SDK Frameworks
All iOS SDK Frameworks

All tvOS SDK Frameworks

All visionOS SDK Frameworks
All watchOS SDK Frameworks
All Mac Catalyst Frameworks

® o o o o o

Let's have a look at some of these frameworks in more detail.

Foundation

Probably the most critical framework for any Cocoa app is the Foundation framework, because — as the name implies — it provides much of the
foundation classes that make up an application on the Objective-C runtime. This includes most of the standard classes with NS* prefixes (aside from
GUI classes, more on that below), from simple and essential types such as NSString, NSArray and the like, to classes that provide access to core OS
services, such as NSFileManager for disk access, NSNotificationCenter for working with notifications, NSURL* classes to work with network requests, and
many many more.

Read more at about Foundation.fx. It is available on all Cocoa sub-platforms.

User Interfaces: AppKit vs. UIKit vs. WatchKit.

The similarities between the iOS, watchOS, tvOS and macOS SDKs dissipate as we enter the realm of user interface development — and for good
reason, as the Ul for applications on these platforms is vastly different. For this reason, the SDKs provide three very distinct frameworks:

AppKit is included in the macOS SDK only, and provides all the classes and controls you need for creating Mac applications. For legacy reasons, most

of these classes share a common naming prefix with Foundation and start with NS*, and classes you will be working with includeNSWindow, NSButton,
NSTableView and the like.

UIKit is the framework that both iOS and tvOS use to provide their Uls, and its classes start with aul* prefix. Many concepts are shared by AppKit and
UIKit, but the classes are different &mdash some more than others. For example, both frameworks have a class to represent color (NSColor and UlColor,
respectively) that work very similarly, while other concepts are pretty unique to UIKit, such as its use of predefined controllers like UINavigationController
and UlTabBarController. UIKit also has differences (some minor, some very significant) between iOS and tvOS.

WatchKit, finally, is used by watchOS to build Ul for the Apple Watch in terms of Apps, Glances and Notifications. (There is als@lockkit for building
watch face Complications.) WatchKit uses a different and more simple approach for Ul design than UIKit.

The different frameworks force the developer to rethink and design their application Ul from the ground up, but that is a good thing, because the Ul
paradigms on each platform are fundamentally different, with UIKit being largely driven by touch (both direct and via the Siri Remote on Apple TV) and
AppKit being used for more traditional mouse+keyboard style interaction.

But a lot of the concepts behind the frameworks are similar, and you will find that learning to create applications on one will in many cases translate
easily to the other. For example, all three frameworks embrace the Model-View-Controller paradigm for separating the actual Ul from the "controller"
class that drives it. This becomes apparent the moment you start creating your first Ul, because rather than implementing your own Window or View
class (due to the single-window nature of iOS, UIKit applications think mostly in terms of views, not windows) in code as you would in .NET or Delphi,
you implement a Window (or View) ""Controller".

Other topics on this docs site, such as the Working with XIB Files article discuss these concepts in more detail.
Read more at about AppKit.fx, UIKit.fx and WatchKit.fx.

Note: A Cocoa.framework (and matching Cocoa.fx) exists in the macOS SDK. This framework is merely a bundle offoundation and AppKit. It is not to be
confused with our general use of the term "Cocoa" to refer to the entire platform.

More Specific Ul Frameworks

Both SDKs contain additional frameworks that build on top of AppKit and UIKit to provide access to more advanced or specific Ul elements.
For example:

e The macOS, i0S and watchOS SDKs containMapKit, which provides classes to integrate Apple Maps into your application, both to show maps,
and to work with geographical data. (MapKit also works together tightly with CorelLocation, covered below.)

e Both iOS and macOS contain the new Social framework that lets your application show Ul for sharing content on Twitter, Facebook, Sina Weibo

and other social networks.

iOS provides the MessageUl framework for interacting with email and letting the user send emails straight from your application.

SpriteKit, new in both iOS 7.0 and OS X 10.9 and SceneKit (new in OS X 10.9 and also in iOS as of version 8.0) makes it easier to create great

game Ul.

.

.

System Services

There are also a bunch of frameworks that let your application interact with system services, such as:

StoreKit to handle in-app purchases for iOS and Mac App Store apps.

Security to access the system key chain, store and retrieve passwords and certificates, etc.
CorelLocation to work with GPS (and Wifi-based location services).

CoreAudio and CoreVideo to work with and play audio and video media.

Addressbook and EventKit to work with users' Contacts and Calendars (alongside EventKitUI on iOS).
GameKit to integrate your games with Game Center.

e o o o o o

(all shared between all platforms) and more.

Lower-level Frameworks

If you want to go beyond just AppKit/UIKit for your user interface development, both SDKs also provide frameworks that let you get your hands dirtier
and work with the Ul on lower levels.

s CoreGraphics is the foundation of all graphics rendering in the core Ul frameworks, and you can and will work with it when creating your own
custom controls.

e QuartzCore contains ""CoreAnimation", the library that provides sophisticated yet easy access to adding animation to your applications — a
must for any modern iOS and Mac app.

« GLKit lets you add OpenGL based elements to your UIKit/AppKit applications, while the lower-levelOpenGL (macOS) and OpenGLES (iOS and
tvOS) frameworks give you full access to the raw OpenGL APIs.

rtl.fx, libToffee.fx, libSwift.fx

In addition to the core SDK frameworks, Elements provides three additional.fx files that are crucial to its operation.

e rtl.fx is even more fundamental than the Foundation framework, and contains all the low-level C-style APIs that make up the core UNIX system of
macOS, iOS, watchOS and tvOS; it also contains libraries such as Grand Central Dispatch and CommonCrypto. Essentially, rtl.fx represents most
of the headers in /usr/include.

« libToffee.fx contains helper types that are crucial to the Elements compiler itself. For example, it contains internal support foFuture Types,
generic NSArray<T> and NSDictionary<T> types, LINQ support, and more.

« libSwift.fx provides additional types and functions specific to the Swift language.

Any Cocoa application will automatically referencertl.fx, whether it is explicitly listed in the References or not. References tolibToffee.fx and libSwift.fx
are optional; the compiler will warn/error if features are used that require a reference to libToffee.fx or libSwift.fx and they are not referenced.

(All projects created from templates will automatically referencelibToffee.fx by default; all Swift templates also referencelibSwift.fx.)

macO0S SDK Frameworks

The following lists the frameworks that are part of theOS X SDK as of version 10.15 (Catalina).

o AGL

e AVFoundation.AVFAudio (new in 10.X)
e AVFoundation

e AVKit (new in 10.9)

e Accelerate

® 6 06 © © 0 0 0 6 6 0 © 0 0 0 0 0 0 0 0 0 0 © 0 0 O O 06 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 06 06 0 0 0 0 0 0 0 0 0 0 0 o

Accelerate.vimage
Accelerate.vecLib (new/moved in 10.9)
Accounts (new in 10.8)
AdSupport (new in 10.X)
AddressBook

AppKit — core framework for creating Mac GUI apps
AppleScriptKit
AppleScriptObjC
ApplicationServices
ApplicationServices.ATS
ApplicationServices.ATSUI
ApplicationServices.HIServices
ApplicationServices.LangAnalysis
ApplicationServices.PrintCore
ApplicationServices.QD
ApplicationServices.SpeechSynthesis
ApplicationServices
AudioToolbox

AudioUnit
AuthenticationServices
Automator

BackgroundTasks
BusinessChat

CFNetwork

CalendarStore

CallKit
Carbon.CommonPanels
Carbon.HIToolbox
Carbon.Help
Carbon.ImageCapture
Carbon.OpenScripting
Carbon.Print
Carbon.SecurityHlI
Carbon.SpeechRecognition
Carbon

CloudKit

Cocoa — bundle containing both Foundation and AppKit
Collaboration

ColorSync

Contacts

ContactsUl

CoreAudio

CoreAudioKit
CoreAudioTypes
CoreBluetooth

CoreData

CoreFoundation — lower-level C System APIs
CoreGraphics

CoreHaptics

Corelmage

CorelLocation

CoreMIDI

CoreML

CoreMedia

CoreMedialO

CoreMotion

CoreServices.AE
CoreServices.CarbonCore
CoreServices.DictionaryServices
CoreServices.FSEvents
CoreServices.LaunchServices
CoreServices.Metadata
CoreServices.OSServices
CoreServices.SearchKit
CoreServices.SharedFileList
CoreServices

CoreSpotlight
CoreTelephony

CoreText

CoreVideo

CoreWLAN

CryptoTokenKit
DVDPlayback

DeviceCheck
DirectoryService
DiscRecording
DiscRecordingUl
DiskArbitration

EventKit

ExceptionHandling
ExecutionPolicy
ExternalAccessory
FWAUSserLib

FileProvider

FileProviderUl

FinderSync

ForceFeedback

Foundation — Base library of the standardNs* classes shared with all Cocoa SDKs
GLKit

GLUT

GameController

GameKit

® © 06 © 0 0 0 0 6 6 0 0 0 0 0 © 0 0 0 0 0 0 0 0 0 0 O 0 0 0 © 06 0 0 0 0 0 0 0 06 0 06 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 o

GameplayKit
Hypervisor

ICADevices
IMServicePlugin
I0Bluetooth
10BluetoothUl
I0Surface

IOUSBHost
IdentityLookup
ImageCaptureCore
ImagelO
InputMethodKit
InstallerPlugins
InstantMessage

Intents

JavaScriptCore
JavaVM.JavaNativeFoundation
JavaVM.JavaRuntimeSupport
JavaVM

Kerberos

LDAP
LatentSemanticMapping
LinkPresentation
LocalAuthentication
Logging

MapKit
MediaAccessibility
Medialibrary
MediaPlayer
MediaToolbox

Metal

MetalKit

MetricKit

ModellO
MultipeerConnectivity
NaturalLanguage

NetFS

Network
NetworkExtension
NotificationCenter
OSAKit

OpenAL

OpenCL
OpenDirectory.CFOpenDirectory
OpenDirectory

OpenGL

PCSC

PDFKit

PencilKit

Photos

PhotosUI
PreferencePanes
PushKit

Python

Quartz.ImageKit
Quartz.QuartzComposer
Quartz.QuartzFilters
Quartz.QuickLookUI
Quartz

QuartzCore

QuickLook
QuickLookThumbnailing
Ruby

SafariServices

SceneKit

ScreenSaver
ScriptingBridge
Security
SecurityFoundation
Securitylnterface
ServiceManagement
Social

SoundAnalysis

Speech

SpriteKit

StoreKit

SwiftUl (not supported yet)
SyncServices
SystemConfiguration
SystemExtensions
TWAIN

Tcl

UserNotifications
VideoDecodeAcceleration
VideoSubscriberAccount
VideoToolbox

Vision

WebKit

iTunesLibrary

vmnet

rtl — The base C run-time library (usr/include) and Elements' own base types
libToffee — Helper types for Elements compiler features

o libSwift — Helper types for the Swift language

See Also

o Official OS X SDK documentation provided by Apple
e iOS SDK Frameworks

iOS SDK Frameworks

The following lists the frameworks that are part of theiOS SDK as of version 13.0.

ARKit
AVFoundation.AVFAudio
AVFoundation
AVKit

Accelerate
Accelerate.vimage
Accelerate.vecLib
Accounts
AdSupport
AddressBook
AddressBookUI
AssetsLibrary
AudioToolbox
AudioUnit
AuthenticationServices
BackgroundTasks
BusinessChat
CFNetwork

CallKit

CarPlay

ClassKit

CloudKit

Contacts
ContactsUlI
CoreAudio
CoreAudioKit
CoreAudioTypes
CoreBluetooth
CoreData
CoreFoundation — lower-level C System APIs
CoreGraphics
CoreHaptics
Corelmage
Corelocation
CoreMIDI

CoreML
CoreMedia
CoreMotion
CoreNFC
CoreServices
CoreSpotlight
CoreTelephony
CoreText
CoreVideo
CryptoTokenKit
DeviceCheck
EventKit
EventKitUI
ExternalAccessory
FileProvider
FileProviderUl
Foundation — Base library of the standardNs* classes shared with all Cocoa SDKs
GLKit
GameController
GameKit
GameplayKit
HealthKit
HealthKitUI
HomeKit
I0Surface
IdentityLookup
IdentityLookupUlI
ImageCaptureCore
ImagelO

Intents

IntentsUl
JavaScriptCore
LinkPresentation
LocalAuthentication
MapKit
MediaAccessibility
MediaPlayer
MediaToolbox
MessageUl
Messages

Metal

MetalKit

MetricKit
MobileCoreServices
ModellO

®© © © © 6 0 06 0 0 0 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 © 0 0 0 0 0 0 5 06 0 06 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0

MultipeerConnectivity
NaturalLanguage
Network
NetworkExtension
NewsstandKit
NotificationCenter
OpenAL

OpenGLES

PDFKit

PassKit

PencilKit

Photos

PhotosUl

PushKit

QuartzCore

QuickLook
QuickLookThumbnailing
ReplayKit
SafariServices

SceneKit

Security

Social

SoundAnalysis

Speech

SpriteKit

StoreKit

SwiftUl (not supported yet)
SystemConfiguration
Twitter

UIKit

UserNotifications
UserNotificationsUl
VideoSubscriberAccount
VideoToolbox

Vision

VisionKit
WatchConnectivity
WebKit

iAd

rtl — The base C run-time library (usr/include) and Elements' own base types
libToffee — Helper types for Elements compiler features
libSwift — Helper types for the Swift language

© © © 06 6 6 0 06 0 0 6 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 06 06 0 0 0 0 0 0 0 0 0 0 o

See Also

e i0S Technology Overview
o Official iOS SDK documentation provided by Apple

e macOS SDK Frameworks

tvOS SDK Frameworks

The following lists the frameworks that are part of thetvOS SDK as of version 13.0.

AVFoundation.AVFAudio
AVFoundation

AVKit

Accelerate
Accelerate.vimage
Accelerate.vecLib
AdSupport
AudioToolbox
AudioUnit
AuthenticationServices
BackgroundTasks
CFNetwork

CloudKit

CoreAudio
CoreAudioTypes
CoreBluetooth
CoreData
CoreFoundation — Lower-level C System APIs
CoreGraphics
Corelmage
Corelocation

CoreML

CoreMedia
CoreServices
CoreSpotlight
CoreText

CoreVideo
CryptoTokenKit
DeviceCheck
ExternalAccessory
Foundation — Base library of the standardNs* classes shared with all Cocoa SDKs
GLKit

GameController
GameKit

GameplayKit

HomeKit

I0Surface

ImagelO

® © 6 © 06 06 06 0 0 0 0 06 06 0 0 0 0 0 0 0 0 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JavaScriptCore

MapKit

MediaAccessibility

MediaPlayer

MediaToolbox

Metal

MetalKit

MetricKit

MobileCoreServices

ModellO

MultipeerConnectivity

NaturalLanguage

Network

OpenAL

OpenGLES

Photos

PhotosUlI

QuartzCore

ReplayKit

SceneKit

Security

SoundAnalysis

SpriteKit

StoreKit

SwiftUl (not supported yet)
SystemConfiguration

TVMLKit

TVServices

TVUIKit

UIKit

UserNotifications

VideoSubscriberAccount

VideoToolbox

Vision

UIKit — The core framework for creating iOS, watchOS and tvOS user interfaces
rtl — The base C run-time library (usr/include) and Elements' own base types
libToffee — Helper types for Elements compiler features
libSwift — Helper types for the Swift language

®© © 6 06 06 © 06 06 0 0 0 06 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0

See Also

iOS Technology Overview

Official iOS SDK documentation provided by Apple
iOS SDK Frameworks

macOS SDK Frameworks

watchOS SDK Frameworks

The following lists the frameworks that are part of thewatchOS SDK as of version 6.0.

e o o o

AVFoundation.AVFAudio
AVFoundation
Accelerate
Accelerate.vimage
Accelerate.vecLib
AuthenticationServices
ClockKit — Classes for creating custom watch face Complications
CloudKit

Contacts

CoreAudio
CoreAudioTypes
CoreBluetooth
CoreData
CoreFoundation — Lower-level C System APIs
CoreGraphics
Corelocation

CoreML

CoreMedia

CoreMotion
CoreServices

CoreText

CoreVideo

EventKit

Foundation — Base library of the standardNs* classes shared with the iOS and OS X SDK frameworks
GameKit

HealthKit

HomeKit

ImagelO

Intents

MapKit

MediaPlayer
MobileCoreServices
NaturalLanguage
Network

PassKit

PushKit

SceneKit

Security

SoundAnalysis

SpriteKit

SwiftUl (not supported yet)

®© © 6 © 06 0 06 06 0 0 0 0 06 0 0 0 0 0 0 06 06 0 06 0 0 0 0 0 0 06 06 0 0 0 0 0 0 0 0 0 0

UIKit

UserNotifications

WatchConnectivity

WatchKit — The core framework for watchOS user interfaces

rtl — The base C run-time library (usr/include) and Elements' own base types
libToffee — Helper types for Elements compiler features

libSwift — Helper types for the Swift language

e o o o o o o

See Also

e iOS Technology Overview
o Official iOS SDK documentation provided by Apple
e OS X SDK Frameworks

UIKit for Mac Frameworks

The following lists the frameworks that are part of the SDKs inMac Catalyst as of iOS 13.0 (macOS 10.15 Catalina).

AGL

AVFoundation.AVFAudio
AVFoundation

AVKit

Accelerate
Accelerate.vimage
Accelerate.vecLib

Accounts

AdSupport

AddressBook (deprecated and unsupported)
AppKit — core framework for creating Mac-native user interfaces
AppleScriptKit
AppleScriptObjC
ApplicationServices.ATS
ApplicationServices.ATSUI
ApplicationServices.HIServices
ApplicationServices.LangAnalysis
ApplicationServices.PrintCore
ApplicationServices.QD
ApplicationServices.SpeechSynthesis
ApplicationServices
AudioToolbox

AudioUnit
AuthenticationServices
Automator

BackgroundTasks
BusinessChat

CFNetwork

CalendarStore

CallKit
Carbon.CommonPanels
Carbon.HIToolbox
Carbon.Help
Carbon.ImageCapture
Carbon.OpenScripting
Carbon.Print
Carbon.SecurityH]I
Carbon.SpeechRecognition
Carbon

CloudKit

Cocoa

Collaboration

ColorSync

Contacts

ContactsUl

CoreAudio

CoreAudioKit
CoreAudioTypes
CoreBluetooth

CoreData

CoreFoundation
CoreGraphics

CoreHaptics

Corelmage

Corelocation

CoreMIDI

CoreML

CoreMedia

CoreMedialO

CoreMotion

CoreNFC

CoreServices.AE
CoreServices.CarbonCore
CoreServices.DictionaryServices
CoreServices.FSEvents
CoreServices.LaunchServices
CoreServices.Metadata
CoreServices.OSServices
CoreServices.SearchKit
CoreServices.SharedFileList
CoreServices

CoreSpotlight
CoreTelephony

®© © © © 6 0 6 0 0 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 © 06 0 06 0 0 0 0 0 06 0 0 0 0 0 0 0 0

® © 0 6 © 0 0 © 6 6 0 0 0 0 0 0 0 0 0 0 0 0 © 0 0 0 O 06 0 0 0 0 0 0 06 0 0 0 0 0 0 0 06 0 06 0 o

CoreText
CoreVideo
CoreWLAN
CryptoTokenKit
DVDPlayback
DeviceCheck
DirectoryService
DiscRecording
DiscRecordingUl
DiskArbitration
EventKit
EventKitUl
ExceptionHandling
ExecutionPolicy
ExternalAccessory
FWAUSserLib
FileProvider
FileProviderUl
FinderSync
ForceFeedback

Foundation — Base library of the standardNs* classes shared with all Cocoa SDKs

GLUT
GameController
GameKit
GameplayKit
HealthKit
HealthKitUI
Hypervisor
ICADevices
IMServicePlugin
I0Bluetooth
10BluetoothUl
I0Surface
IOUSBHost
IdentityLookup
IdentityLookupUlI
ImageCaptureCore
ImagelO
InputMethodKit
InstallerPlugins
InstantMessage
Intents

IntentsUl
JavaScriptCore
JavaVM.JavaNativeFoundation
JavaVM.JavaRuntimeSupport
JavaVM

Kerberos

LDAP
LatentSemanticMapping
LinkPresentation
LocalAuthentication
Logging

MapKit
MediaAccessibility
MediaLibrary
MediaPlayer
MediaToolbox
MessageUl

Metal

MetalKit

MetricKit
MobileCoreServices
ModellO
MultipeerConnectivity
NaturalLanguage
NetFS

Network
NetworkExtension
NotificationCenter
OSAKit

OpenAL

OpenCL
OpenDirectory.CFOpenDirectory
OpenDirectory
OpenGL

PCSC

PDFKit

PassKit

PencilKit

Photos

PhotosUl
PreferencePanes
PushKit

Python
Quartz.ImageKit
Quartz.QuartzComposer
Quartz.QuartzFilters
Quartz.QuickLookUl
Quartz

QuartzCore
QuickLook

QuickLookThumbnailing

ReplayKit

Ruby

SafariServices

SceneKit

ScreenSaver

ScriptingBridge

Security

SecurityFoundation

SecurityInterface

ServiceManagement

Social

SoundAnalysis

Speech

SpriteKit

StoreKit

SwiftUl (not unsupported yet)

SyncServices

SystemConfiguration

SystemExtensions

TWAIN

Tcl

UIKit — The core framework for creating UIKit based user interfaces
UserNotifications

VideoDecodeAcceleration
VideoSubscriberAccount

VideoToolbox

Vision

VisionKit

WatchConnectivity

WebKit

iAd

iTunesLibrary

vmnet

rtl — The base C run-time library (usr/include) and Elements' own base types
libToffee — Helper types for Elements compiler features
libSwift — Helper types for the Swift language

® 6 06 06 o6 06 06 0 0 06 06 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 06 06 0 0 0 0 0 0 0 0

See Also

o Official UIKit for Mac Developer Site
¢ macOS SDK Frameworks
e iOS SDK Frameworks

rtl.fx

rtl.fx is the Reference file for the C base library used by the Cocoa platform. It contains many basic functions and C APIs used and needed by Cocoa
apps and by the more advanced Cocoa frameworks, such as Foundation.fx, et al.

The types and functions provided by rtl.fx are exposed in the rtl Namespace and its sub-namespaces. Every Cocoa project automatically references
rtl.fx, and the rtl namespace is automatically in scope in all source files, so that its members can commonly be accessed directly and without
namespace prefix.

Note: rtl.fx has no exact matching static library.a file or .framework file. Instead, it represents code from a variety of base libraries that are linked into
every Cocoa project and are part of the core OS X and iOS operating systems.

libToffee.fx

libToffee.fx and its matching libToffee.a static library is an optionalToffee Base Library provided by the Elements compiler to facilitate some advanced
language and compiler features.

It contains helper types that are crucial to the Elements compiler itself, such as internal support for OxygeneFuture Types, generic versions of the
NSArray<T> and NSDictionary<T> classes, extension methods to enableLINQ support, and more.

Source code for libToffee.fx is available on GitHub, with contributions being welcome.

Unlike rtl.fx, libToffee.fx is not automatically referenced by the Elements compiler, but new Cocoa projects created from templates will have the
reference. The compiler will emit appropriate warnings if your code uses features that require libToffee.fx and it is not referenced.

See Also

o Toffee Base Library APl Reference
o libToffee on GitHub

Foundation.fx

'Foundation.fx' is probably the most critical framework for any Cocoa app, because — as the name implies — it provides much of the foundation
classes that make up an application on the Objective-C runtime. This includes most of the standard classes with NS* prefixes (aside from Mac GUI
classes in AppKit.fx), from simple and essential types such asNSString, NSArray and the like to classes that provide access to core OS services, such as
NSFileManager for disk access, NSNotificationCenter for working with notifications, NSURL* classes to work with network requests, and many many more.

Foundation is one of the frameworks shared betweenjOS and Mac OS X, and you will find that the vast majority of its content is identical on both
platforms. This means that any code you write with those classes can, most likely, be shared in applications for both. This comes in handy if you are
creating an app with both Mac and iOS versions, as much of the non-visual, back-end code can be shared.

There are, however, also platform-specific classes in Foundation. For example, theNSUserNotificationCenter class, new since OS X 10.8 Mountain Lion,
which lets your application interact with the notification center Ul, is available on the OS X SDK only, as are the NSXML* classes that provide an
extensive library for working with XML files.

All types from Foundation.fx are exposed in the Foundation Namespace.

Note: A Cocoa.framework (and matching .fx) exists in the OS X SDK. This framework is merely a bundle offoundation and AppKit, and not to be confused
with our general use of the term "Cocoa" to refer to the entire platform.

External Links

You can find the complete documentation of the Foundation framework here:

e Foundation Framework Reference
e Apple Developer Library

See Also

o rtl.fx

* AppKit.fx
e UIKit.fx

UIKit.fx

UIKit.fx is the framework that provides the basic building blocks for user interfaces onOS and tvOS. Its classes start with a U prefix.

Many concepts are shared by UIKit and its counterpart on Mac,Appkit.fx, but the classes are different &mdash some more than others. For example,
both frameworks have a class to represent color that work very similarly, NSColor and UiColor, respectively, while other concepts are pretty unique to
UIKit, such as its use of predefined controllers like UINavigationController and UITabBarController.

UIKit has differences (some minor, some very significant) between iOS and tvOS, but in general follows the same principles on both sub-platforms.

All types from UIKit.fx are exposed in the UIKit Namespace.

External Links

Some recommended topics in Apple's excellent documentation are:

o UIKit Framework Reference

e Cocoa Application Competencies for i0S
e Apple Developer Librar:

See Also

o rtl.fx

e Foundation.fx

e AppkKit.fx on OS X

o WatchKit.fx on watchOS

AppKit.fx

AppKit.fx is included in the OS X SDK only, and provides all the classes and visual controls you need for creating Mac GUI applications. It is not available
for iQS, watchQS ortvOS.

For legacy reasons, most of these classes share a common naming prefix with Foundation and start withns*. Classes you will be working with include
NSWindow, NSButton, NSTableView and the like.

All types from AppKit.fx are exposed in the AppKit Namespace.

Note: A Cocoa.framework (and matching .fx) exists in the OS X SDK. This framework is merely a bundle offoundation and AppKit, and not to be confused
with our general use of the term "Cocoa" to refer to the entire platform. Your projects can choose to either reference Cocoa.fx or Foundation.fx and
AppkKit.fx individually - the end result is the same.

External Links

Some recommended topics in Apple's excellent documentation are:

o AppKit Framework Reference

e Document-Based App Programming Guide for Mac
e Cocoa Drawing Guide

e Apple Developer Library

See Also

tl.fx

Foundation.fx

UIKit.fx on iOS and tvOS
WatchKit.fx on watchOS

WatchKit.fx

WatchKit.fx is the framework that provides the classes for building the Ul for Apps, Glances and Notifications orwatchOS. Its Ul classes start with a
WKinterface* prefix.

All types from Watchkit.fx are exposed in the WatchKit Namespace.
See the Your First watchOS App with Firetutorial for getting started with Apple Watch development.

Working with watchOS requires Elements 8.2 or later and is currently supported only in Fire.

External Links

Some recommended topics in Apple's excellent documentation are:

e WatchKit Framework Reference
o Apple Developer Librar

See Also

Your First watchOS App with Fire Tutorial
rtl.fx

Foundation.fx

AppkKit.fx on OS X

UIKit.fx on iOS and tvOS

e o o o o

macO0S

The macOS SDK (formerly "OS X SDK") provides all the types and classes made available by Apple for creating applications and other projects for the
Mac.

Each Cocoa SDK is spread over severalframeworks and core include files. The core C APIs are located inrtl.fx, which is a package containing pretty
much everything defined in /usr/include. The base framework of core Cocoa classes is called ¥oundation" (shared with macOS), and contains, among
many other things, NSObject, the base type for all Cocoa classes.

More frameworks are shared across sub-platforms, while each sub-platform also provides its own unique frameworks.

Please refer to the Introduction to the Frameworks topic for more information on how the frameworks fit together, and how they differ between the
(currently) four separate Cocoa platforms.

For all the SDK frameworks, theNamespace used matches the framework name.

macOS is the oldest of the four platforms, and the ancestor ofiOS (and iOS's watchOS and tvOS siblings). As such, it shares many of the lower-level
non-Ul frameworks with those platforms, but provides its own paradigms for GUI development, in AppKit and related frameworks.

In addition to the macOS SDK, you can also build applications for the Mac using the [iOS]((iOS) SDK, witiMac Catatyst.

See Also

Your First Mac App with Fire Tutorial

Your First Mac App with Visual StudioTutorial
Introduction to the Frameworks

List of all macOS SDK Frameworks

Official macOS SDK Developer Site

Official macOS SDK Documentation

Apple Developer Library

e ® o o o o o

macO0S — i0S — tvOS — visionOS — watchOS — Mac Catatyst

iOS and iPadOS

The i0OS SDK provides all the types and classes made available by Apple for creating applications for iPhone, iPad and iPod touch.

Each Cocoa SDK is spread over severalframeworks and core include files. The core C APIs are located inrtl.fx, which is a package containing pretty
much everything defined in /usr/include. The base framework of core Cocoa classes is called ¥oundation" (shared with macOS), and contains, among
many other things, NSObject, the base type for all Cocoa classes.

More frameworks are shared across sub-platforms, while each sub-platform also provides its own unique frameworks.

Please refer to the Introduction to the Frameworks topic for more information on how the frameworks fit together, and how they differ between the
(currently) four separate Cocoa platforms.

For all the SDK frameworks, theNamespace used matches the framework name.

iOS is built on the same core operating system asmacOS, and shares many of the lower-level non-Ul frameworks wth it. It provides its own paradigms
for GUI development, in UIKit and related frameworks.

See Also

Your First iOS App with Fire Tutorial

Your First iOS App with Visual Studio Tutorial
Introduction to the Frameworks

List of all iOS SDK Frameworks

Official iOS SDK Developer Site

Official i0OS SDK Documentation

e o o o o o

macOS — i0S — tvOS — visionOS — watchOS— Mac Catatyst

tvOS

The tvOS SDK provides all the types and classes made available by Apple for creating applications for Apple TV.

Each Cocoa SDK is spread over severalframeworks and core include files. The core C APIs are located inrtl.fx, which is a package containing pretty
much everything defined in /usr/include. The base framework of core Cocoa classes is called ¥oundation" (shared with macOS), and contains, among
many other things, NSObject, the base type for all Cocoa classes.

More frameworks are shared across sub-platforms, while each sub-platform also provides its own unique frameworks.

Please refer to theIntroduction to the Frameworks topic for more information on how the frameworks fit together, and how they differ between the
(currently) four separate Cocoa platforms.

For all the SDK frameworks, theNamespace used matches the framework name.

tvOsS is derived from iOS and very closely related to it (more so than iOS andmacOS are related), but still a distinctive platform.

Like in iOS, core types for GUI development are provided inuUlkit, which is similar but different than the same-named framework on iOS. A lot of
frameworks are shared with macOS and/or iOS, but tvOS provides a drastically reduced feature set, and of course some elements that are unique to
the platform.

See Also

Your First Apple TV App with FireTutorial

Your First Apple TV App with Visual Studio Tutorial
Introduction to the Frameworks

List of all tvOS SDK Frameworks

Official tvOS SDK Developer Site

Official tvOS SDK Documentation

e o o o o o

macOS — j0S — tvOS — visionOS — watchOS — Mac Catatyst

visionOS

The visionOS SDK provides all the types and classes made available by Apple for creating applications for Apple Vision Pro.

Each Cocoa SDK is spread over severalframeworks and core include files. The core C APIs are located inrtl.fx, which is a package containing pretty
much everything defined in /usr/include. The base framework of core Cocoa classes is called ¥oundation" (shared with macOS), and contains, among
many other things, NSObject, the base type for all Cocoa classes.

More frameworks are shared across sub-platforms, while each sub-platform also provides its own unique frameworks.

Please refer to the Introduction to the Frameworks topic for more information on how the frameworks fit together, and how they differ between the
(currently) four separate Cocoa platforms.

For all the SDK frameworks, theNamespace used matches the framework name.

visionOS is derived from iOS and very closely related to it (more so than iOS andmacOS or even tvOS are related), but still a distinctive platform.

Like in iOS, core types for GUI development are provided inuikit, which is similar but different than the same-named framework on iOS. A lot of
frameworks are shared with iOS (and even macOS), and most iOS and iPadOS projects should port to and compile for visionOS, easily.

See Also

Introduction to the Frameworks

List of all visionOS SDK Frameworks

Official visionOS SDK Developer Site
Official visionOS SDK Documentation

e o o o

macOS — i0S — tvOS — visionOS — watchOS — Mac Catatyst

watchOS

The watchOS SDK provides all the types and classes made available by Apple for creating applications for Apple Watch (running watchOS 2.0 or
later).

Each Cocoa SDK is spread over severalframeworks and core include files. The core C APIs are located inrtl.fx, which is a package containing pretty
much everything defined in /usr/include. The base framework of core Cocoa classes is called ¥oundation" (shared with macOS), and contains, among
many other things, NSObject, the base type for all Cocoa classes.

More frameworks are shared across sub-platforms, while each sub-platform also provides its own unique frameworks.

Please refer to the Introduction to the Frameworks topic for more information on how the frameworks fit together, and how they differ between the
(currently) four separate Cocoa platforms.

For all the SDK frameworks, theNamespace used matches the framework name.

watchOS is loosely derived fromiQS, but has a severely reduced feature set, and a different model for building user interfaces - thewatckkit and
Clockkit frameworks, respectively. It does not provide UiKit-level Ul access (although it is build upon UIKit).

See Also

Your First watchOS App with Fire Tutorial
Introduction to the Frameworks

List of all watchOS SDK Frameworks
Official watchOS SDK Developer Site
Official watchOS SDK Documentation

e o o o o

macOS — i0S — tvOS — visionOS— watchOS — Mac Catatyst

Mac Catalyst

Mac Catalyst, also refereed to as "UIKit for Mac", allows you to build [iOS and iPadOD](iOS projects to run natively on thac, while still being

utilizing the UIKit and other iOS specific APIs and design paradigms. Applications build for this mode can also mix iPAppKit and other macOS-specific
frameworks.

Mac Catalyst is not a separate SDK or project type on its own, rather, it is an option on iOS project that can be enabled by setting th&tipport Mac
Catalyst" project setting toTrue.

See Also

e Introduction to the Frameworks
o List of all UIKit for Mac Frameworks
o Official UIKit for Mac Developer Site

e Blog: UIKit for Mac with Elements (June 2019)
e Blog: Video: Bringing your iOS App to the Mac with Catalyst (née Marzipan)(July 2019)
o Video: UIKIt for Mac with Elements (2:39, July 2019)

macOS — i0S — tvOS — visionOS — watchOS — Mac Catalyst

Remote Building (from Windows)

If you work in Water of Visual Studio on Windows, some build phases will run remotely over the network, on a Mac.

You need a Mac with Secure Shell (SSH) enabled, and Xcode installed, and connect to it viaCrossBox Elements built-in infrastructure for remote
debugging.

Please refer to these topics below for more detailed instructions on how to set the Mac up:

o Setting up for Cocoa Development with Water on Windows
e Setting up for Cocoa Development with Visual Studio on Windows

When you open a Cocoa project on Windows in Water or Visual Studio, the CrossBox server/device selector in the toolbart will show
"(Unsuppoerted)" after the name of your local machine, because Cocoa apps cannot build* and run on Windows.

Before working in the project, you need to either create a new connection to your Mac, or select an existing one you created before, via said device
picker. Refer to the following topics for more detail:

e Connecting to CrossBox server from Water
e Connecting to CrossBox from Visual Studio
e Connecting to CrossBox with EBuild on the Command Line

Once a connection is made, you are ready to build, debug and deploy using your Mac for build tasks that cannot be done on Windows, and to test and
run your projects of course.

macOS projects will run directly on the Mac selected via the CrossBox device picker; iOS, tvOS and watchOS projects can be run on Simulators on the
same Mac, or on physical devices connected to the Mac via USB or WiFi.

Provisioning Profiles & Code Signing Certificates

To run build iOS, tvOS and watchOS applications to be run on-device (whether for local debugging oPeployment you will need a matching
Provisioning Profile and Code Signing Certificate that you can obtauin from Apple's developer portalhere.

Provisioning Profiles can be dowloaded on the Mac and either double-clicked to have Xcode install them, or manually places in the
~//Library/MobileDevice/Provisioning Profiles folder.

Certificates can be requested and downloaded to the Mac and double-clicked to be installed in the macOS Keychain.

In Project Settings you can select both the certificate (for all Cocoa projects) and profile (where applicable) to use for your project. Commonly, you will
se different set of profile and certificate for Deployment or Debugging, in the "Release" and "Debug" configurations.

Water and Visual Studio will automatically obtain the list of available options fro the Mac, but the settings drop-down also provides an option to
manually refresh the list, for example if you just recently added a new profile or certificate.

Keychain Access

By default, the build will look for the selected certificate (by name or fingerprint) in the default Keychain of the macOS user that you are connected as
in your SSH connection.

If you share a build Mac with multiple users, it might make sense to put your certificates ito a separate keychain, which you can create with the
Keychain Access tool that ships with macOS.

If you do so, you will need to provide the name of the keychain to use, in thekeychainName project setting. You can obtain the list of valid names by
running the security list-keychains command in terminal on your Mac, and you will want to provide the full name as emitted by this command, for the
KeychainName setting, e.g.

"/Users/peter/Library/Keychains/login.keychain-db"
("login" is the default keychain that will be used if no name is provided).

You might also need to provide thepassword for the keychain, via thekeychainPassword setting. The password for the default (login) keychain is usually
the same as the password for the user; for custom keychains, you can pick a password upon creation.

What Projects or Build Tasks Require a Mac?

Generally, most real life Cocoa projects will require a Mac for one or more build tasks, but there are a few exceptions.
The following build tasks require connection to a Mac:

e Processing resources such as Storyboards, XIBs, Asset Catalogs or other more rare file formats that require a mac-native tool for conversion.
e Code-signing the final executable or app bundle.
e Linking the final executable, forToffee (V1) projects.

Trying to build a project that requires a Mac connection with the CrossBox server set tom Local", will fail on Windows.
The following project types can be compiled locally, provided Code Signing is not needed:

e Static Librares (as they don't require linkling).
e Dynamic Libraries or plain "command line" executables, when using theToffee V2 or Island back-end.

See Also

Setting up for Cocoa Development with Water on Windows
Setting up for Cocoa Development with Visual Studio on Windows
Connecting to CrossBox server from Water

Connecting to CrossBox from Visual Studio

Connecting to CrossBox with EBuild on the Command Line

e o o o o

e Working with Devices

.fx Files

Elements for Cocoa uses.fx files to reference frameworks and libraries from the compiler and the IDE. You can think of .fx files as "pre-compiled
headers", binary files that encapsulate all the metadata gathered from a framework's or library's .h files. This allows both the compiler and the IDE
intelligence (such as Code Completion) to know the contents of a framework or library without having to reparse the .h files (which can be slow).

You can read more about .fx files here.

Elements comes with pre-built .fx files for all the frameworks in the [macOS SDK](macOS,iOS SDK, tvOS SDK and watchOS SDK versions that are

officially supported, as well as for a few select non-framework libraries (such as libsglite3, lioxml and libz). You can also generate .fx files for other SDK
versions (such as betas) yourself using the FXGen tool as described inImporting New SDKs, and you can import additional non-SDK frameworks and
libraries (such as open source libraries, commercial ones, or even your own libraries written in Objective-C) as well, as explained in Import Projects.

When compiling your own library projects with Elements, .fx files will automatically be generated (in addition to the binary and .h files for use from
Objective-C), so that other Elements projects can use your library right away.

Supported SDKs

Elements for Cocoa is designed to be able to work with any version of Apple's macOS, iOS, tvOS and watchOS SDKs. The product ships with support for
the latest SDKs that are officially released at the time an Elements version was built.

Support for newer SDKs can usually be downloaded within a few days of the new Xcode's availabilityhere, but pending any drastic and unexpected
changes to the tool chain for Apple's SDKs, you can also import newer or beta SDKs using the FXGen tool that is included in theFire, even if we have
not gotten around to supporting them officially yet.

You can also use FXGen to importolder SDKs that we do not ship.fx for anymore, or download them from here. We expect Elements for Cocoa to work
with any SDK as far back as iOS 5.0 and OS X 10.6 (and newer, of course), and with Xcode 5 or kater. We have not tested Elements and FXGen with
SDK and Xcode versions prior to that, and do not officially support those.

See Importing New SDKs for more details on this.

You really should be using the latest released Xcode and SDKs (or newer betas), and settindDeployment Targets to support older devices.

See Also

o .fx files

e FXGen tool

e Importing New SDKs

e Importing Objective-C Frameworks & Libraries
o Deployment Targets

CPU Architectures

When building for the Cocoa platform, Elements allows you to choose to build for different CPU Architectures, depending on the target devices and
operating system versions you wish to support. Elements allows the creation of so-called "Universal Binaries", or "Fat Binaries", that can include
executable code for more than one platform (for example 32-bit and 64-bit).

You can pick one main set of architectures for your application, which might include one or more options depending on the SDK abd version. OnQOS,
tvOS and watchQS, in addition to picking architectures for the device deployment, you can also select separate architectures for running in the
Simulator.

macOS

On macOS, two architecture are supported:

e x86_64 is the architecture of Intel's 64-bit CPUs, sometimes also simply referred to asx64. It is the architecture for all Intel Macs shipped between
2005 and 2021.
e armé64 is the architecture used by newer Macs built on Apple Silicon, shipped in late 2020 and beyond.

You can build Universal binaries that c an include both architectures and can run natively without Rosetta 2 emulation on both Intel-based and Apple
Silicon-based Macs.

Elements does not support the 32-biti386 architecture for macOS, because the "Modern Objective-C Runtime", introduced with Mac OS X 10.5 Leopard,
was never supported on 32-bit. The Modern Objective-C Runtime is a prerequisite for ARC, as well as many other runtime features Cocoa developers
take for granted these days. 32-bit Mac applications were already largely irrelevant when Elements first shipped, got deprecated with macOS 10.14
Mojave and are now totally unsupported as of macOS 10.15 Catalina.

iOS and iPadOS

On jOS and iPadOS, Elements supports three architectures for device deployment:

e armé64 is the current 64-bit ARM CPU architecture, as used since the iPhone 5S and later (6, 6S, SE and 7), the iPad Air, Air 2 and Pro, with the A7
and later chips.

e armv7s (a.k.a. Swift, not to be confused with the language of the same name), being used in Apple's A6 and A6X chips on iPhone 5, iPhone 5C and
iPad 4.

e armv7, an older variation of the 32-bit ARM CPU, as used in the A5 and earlier.

Very old iOS devices shipped before 2009 hadarmvé CPUs, which are no longer supported by current iOS SDKs, nor by Elements.

In Project Settings, you can select to build your projects for one or more architectures. You can either choose architectures explicitly, or you can select
Default, in which case no architectures will be hardcoded into the project settings, and the project will automatically be built against a default set of
architectures (currently armé64-only). This is the most forward-thinking setting, since it will automatically include new architectures when you rebuild
your project against newer SDKs.

e arm64 is only available in iOS 7.0 or later.
e armv7s is only available in iOS 6.0 or later.

Choose carefully when excluding architectures. An application build witharmv7 will run on all current iOS devices, even those that support newer

architectures (it will run as 32-bit on iPhone 5S and later). But on the other hand, an app build without armv7 will not run on older devices such as the
iPhone 4/4S or the original iPad mini.

In addition to the device architecture, Project Settings will also let you choose architectures for the Simulators, where appropriate (i.e. on iOS).

e x64_64 (i.e. 64-bit Intel) is optionally available starting with iOS 7.0.
e i386 (i.e. 32-bit Intel) is the only option on iOS 6.1 and below.

Just as with the device architectures, a special Match Device option is provided for the Simulator Architectures. Selecting this option will once again
not hardcode any architectures in the project; instead Elements will automatically pick the appropriate Simulator architectures, based on which device

architectures you are building for. If your application includes armv7 and/or armv7s, it will includei386 in the Simulator architectures; if your are building
for armé64 on the device, it will build forx86_64 on Simulator.

Just as on the device, Simulator builds can be Universal Binaries and include two (and potentially more, in the future) architectures. If built with both
architectures, you can test your application in both 32-bit and 64-bit versions of the Simulator, without needing to rebuild.

Support for the 32-bit armv7 architecture has been deprecated by Apple and removed from it's own tool chain several years ago; eventually, support
for it in Elementys will be deprecated, as well.

tvOS

On tvOS, Elements supports one architectures each for device deployment, and one for theSimulator:

e arm64 is the current 64-bit ARM CPU architecture and used on Apple TV 4
e x64_64 (i.e. 64-bit Intel) is used in the Simulator

watchOS

On watchOS, Elements supports two architectures each for device deployment and for theSimulator

arm64_32 is a variant of arm64 with 32-bit pointer sizes, used on Apple Watch Series 4 and later.
armv7k is a 32-bit variant of regular armv7, and used from the orginal Apple Watch up to Series 3.
x86_64 (i.e. 64-bit Intel) is used in the Simulator

i386 (i.e. 32-bit Intel) is used in the Simulator

Mac Catatyst ("UIKit for Mac")

On Mac Catatyst, the same architecture(s) are supported as onmacQS, x86_64 and arm64.

o o o o

Deployment Targets

Deployment Targets are a powerful concept on the Cocoa platform that allow you to build applications that take advantage of new features in the

latest platform SDKSs, but can still run on older versions of the operating system. For example, you might want to build your application against the
latest iOS SDK to take advantage of all the new capabilities, but set a Deployment Target of 6.0 or 7.0 to let users with older devices still use your
application - albeit with possibly reduced functionality.

Which SDK(s) to build for is controlled by two settings inProject Properties, the Target SDK and the Deployment Target.

The Target SDK is the main setting; it tells compiler and linker what version of the SDK you want to build against. This setting defines which of the
provided SDK folders with .fx Files the compiler will use, and which classes and other code elements will be available to the compiler. To use features
from a new SDK (without runtime hacks or other nasty workarounds), you will need to build against a version of the SDK that contains the feature. In
many cases, as iOS and OS X evolve, the choice of Target SDK setting will also drive the operating system to give different behavior to your application
by letting it know that it was built to support the new operating system.

For example, to get the new look of standard iOS controls in iOS 7, your application needs to be built with a Target SDK setting dOS 7.0 (or later, of
course). In order to support a 4" screen in iPhone applications, your application needs to be built against i0S 6.0 (or later), and so on. Applications
built against an older Target SDK will often run in "compatibility mode" and not gain access to certain new features.

Of course Elements lets you select an explicit Target SDK version in Project Properties (such as 10S 6.1" or "0S X 10.8") or you can use the more generic
setting of "i0s" or "0S X", which causes the compiler and tool-chain to pick the latest version of the SDK that is both supported locally by yourfx Files
and the version of Xcode you are using. This is a convenient way to avoid hardcoding an SDK version in your project and make upgrading easier - but
it is important to realize that this is just a short-hand: the compiler will still pick a definite Target SDK setting at compile time, and your application will
behave as if you had explicitly specified the exact version.

In other words, if you're building your application with the Target SDK set to {0S", and your Xcode version is 4.6.3, for example, your application will
built just as if you had selected "iOS 6.1" explicitly. When you later update to Xcode 6, new builds will compile for "iOS 8.0" automatically, and so on.

By default, applications will only run on versions of the operating system that are the same or newer as the Target SDK. So if you build an application
with the "0s X 10.7" Target SDK, it will refuse to run on OS X 10.6, for example. This is where the Deployment Target setting comes in.

The Deployment Target setting does not directly affect what the compiler sees. All it does is mark your application as being OK to run on versions of
the operating system that may be older than the Target SDK. For example, if you build your iOS application against "iOS 7.0", but set the Deployment
Target to "5.0", the operating system will allow your application to run on any device with iOS 5.0 or later.

Limitations & Solutions

Of course there is no such thing as a free lunch, and there are several limitations to keep in mind when building with Deployment Targets. Most
importantly, your use of classes or members that are introduced in newer versions of the SDK is affected.

As mentioned above, it is theTarget SDK setting that drives what the compiler sees. If your Target SDK is set to "iOS 8.0", the compiler sees and will
let you freely use all the functionality that is provided by iOS 8 - even if that functionality might not be available on iOS 7 or lower. If you use any of
the missing functionality, your application will most likely crash at runtime when it tries to instantiate a class that does not exist, or call a method
that's not implemented in the older operating system.

But Elements adds a number of compiler and tool-chain features that make it really easy to support different Deployment Targets.
Weak Linking
Elements knows from meta-data in the.fx files which code elements are available in what versions of the SDK. If you are building with a Deployment

Target setting that is lower than the Target SDK, Elements will automatically use so-called "weak linking" to refer to any external types or constants
that may not exist on older operating systems at runtime.

What this means is that instead of crashing on application start due to missing symbols (as you would, for example, expect on Windows, if you
imported functions from a .dll that did not exist on an older OS), your application will launch fine, and those elements will simply be nil.

This means, of course, that you need to be careful in your code to not use classes that are not available - after all, there's no magic in the world that
the compiler could do to let you actually use a class that simply does not exist in the version of the OS your app is running on. But this is easily
achieved by simply checking for nil.

The snippet below shows the common use case of adding a "Pull to Refresh" control to aJiTableview on iOS 6 without breaking the application for iOS 5
and below:

if assigned(typeOf(UIRefreshControl)) then begin
refreshControl := new UIRefreshControl();
refreshControl.addTarget(self)
action(selector(refresh:))
forControlEvents(UIControlEvents.UIControlEventValueChanged);
end;

if (typeOf(UIRefreshControl) != null)
{
refreshControl = new UIRefreshControl();
refreshControl.addTarget(this)
action(__selector(refresh:))
forControlEvents(UIControlEvents.UIControlEventValueChanged);

}

if UIRefreshControl.Type != nil {
refreshControl = UIRefreshControl()
refreshControl.addTarget(this,
action: "refresh:",
forControlEvents: .UIControlEventValueChanged)

}

Readers familiar with the concept of Deployment Targets from Objective-C will notice that Elements even goes a step further with weak linking than
Xcode and Objective-C. In Objective-C, directly referring to a class by name would cause the application to fail to load, requiring hacks such as

[[NSClassFromString(@"UIRefreshControl" alloc] init];
to dynamically find the class at runtime. With Elements that is not necessary.

Another common scenario you will find and use is to check for the availability of new methods on old classes. So the aboveassigned() check could have
been rewritten as

if respondsToSelector(selector(refreshControl)) then begin

if (respondsToSelector(__selector(refreshControl))

{

if (respondsToSelector("refreshControl") { ...
since that method/property would be missing on iOS 5.

The above example checks whethertypeOf(UIRefreshControl) is available to determine if the class can be used, but essentially any way of avoiding the
code path on older OS versions is valid as well, of course. Maybe your application checks the OS version on start-up and loads totally different views
for older OS versions than newer ones, making detailed checks unnecessary.

Deployment Target Hints

Elements has a project setting called "Deployment Target Hints". When enabled, the compiler will emit hints for any code elements you use that are
not available on your lowest Deployment Target. For the above code snippet, it would notify you about allocating the UIRefreshControl class, and about
calling the UlTableView.refreshControl property.

New in Version 8.2, you can use theavailable() System Function to protect code against running on OS versions it is not supported oraend omit
deployment target hints in the process.

The idea is that you will turn this setting on temporarily and review any hints that get reported to make sure that the corresponding code is protected
sufficiently against running on older versions of the OS. Once satisfied, you would turn the hints back off, or surround the individual areas with the
proper if available() checks or {$HIDE NH0}...{$SHOW NH0} Compiler Directives.

In essence, Deployment Target Hints are a first line defense to find places where you need to write version-specific code before your extensive testing
and unit testing would catch the crash that happens for trying to use a non-existing class.

Dedicated rtl.fx files

In addition to some types, members and constants not being available on older Deployment Targets, there can also sometimes be fundamental
differences in core system RTL types. For example, GCD queues became ARC-compatible in iOS 6, but are not in iOS 5, something that is important for
how the compiler generates the executable, even if it won't (usually) affect the code you write yourself.

To allow for this, each SDK import comes with multiple versions ofrtl.fx that provide compatibility information about older Deployment Targets. You do
not need to handle this manually (or even be aware of this, really), but the compiler will automatically pick rtl-5.1.fx instead of the regularrtl.fx if you are
building for an iOS 5 Deployment Target.

Weak References on iOS 4 and OS X 10.6

Automatic Reference Counting (ARC) was introduced with iOS 5 and OS X 10.7, but it is backwards compatible with older versions of iOS and OS X,
allowing you to build applications for Deployment Targets of iOS 3 or 4, or OS X 10.5 or 10.6. But there is one exception: weak references (see Storage
Modifiers) are not supported on those OS versions.

Elements will emit errors if you are using theweak keyword and your Deployment Target is set to iOS 4 or lower or OS X 10.6 or lower. The only way to

build apps for these Deployment Targets is to avoid weak references, possibly changing them to the less convenient unretained type, alongside some
extra checks or logic.

Why Bother?

This is all well and good, you say, but surely it must become tedious to be on the lookout for code that may fail on older OS versions? It can be, yes.
But supporting different Deployment Targets is an important fact of life on the Cocoa platform - which is why we put so much effort into making the

process easier in Elements, with the better weak linking support and the hints, both of which Xcode and Objective-C users need to cope without.

But there is really no simple way around doing this job and proofing your code for older OS versionsif you want to support them. You really only have
three options:

o Continue building against the older SDK (and missing out on any new features and capabilities)
e Drop support for older OS versions
e Proper handling of Deployment Target issues

Option one is not really an option in most cases. Old iOS 5 apps will look wrong on an iPhone 5 and 6's larger screens. Most iOS 6 apps will look old and
dated on iOS 7 and later. It is generally accepted as best practice (and recommended, if not enforced, by Apple) that you should use the latest
shipping Target SDK for your development (and in many cases in the past, Apple has stopped accepting App Store submissions built against older
SDKSs).

Option two might or might not be feasible, depending on your app's business model. Maybe you can afford targeting the latest OS only, but in many
cases you will not want to exclude users on older devices - especially if all the core functionality for your application is supported.

This really just leaves the option of biting the bullet and supporting the full range of OS versions your application needs to support. We hope that
we've made this easy and comfortable for you with the improvements in Elements 6.1.

XIB and Storyboard Files

In this article, i want to talk a bit about working with user interfaces in Elements for Cocoa.

As you know, the Cocoa compiler is a native compiler for the Objective-C runtime, meaning that it works directly with the classes provided by Apple's
Cocoa and Cocoa Touch frameworks. This extends from low-level classes such as NSString or NSArray to the high-level visual components based around
NSView (Mac) and Ulview (iOS).

One common way for Mac and (especially) iOS apps to work with Ul is to simply create the necessary views and controls that make up an app's Ul from
code. But sooner or later, especially when dealing with more complex or sophisticated user interfaces, you will want to use the visual designer. This
works on the same principles, whether you are using Xcode/Objective-C or Elements.

Mac and iOS interfaces are designed in Interface Builder, which as of version 4 of Xcode is directly integrated into the Xcode IDE, and when working
with Elements, that is where you will work with your interfaces, getting the same experience and the same power and flexibility of Ul design that
developers using Objective-C get.

There are two file formats used for designing Ul on Apple's platform - the older XIB format and the newer Storyboard format. The principles for dealing
with these files are similar, and for the sake of simplicity we often refer to "XIB files" in places where both XIBs and Storyboards are covered.

e What are XIB Files?
e How are Storyboard Files different than XIBs?

Terminology: XIB vs. NIB?

This section talks about XIB files, but many of the methods for working with XIB files all mention NIBs. What's up with that?

XIBs are a newer, XML based format that is used for the Ul at design time. When you compile your app, the XIB files are converted to binary NIB files
for you, and those binary versions of the files are embedded into your app. All the APIs working with these files predate the new format (and, at
runtime, only work with the older NIB format), that's why all the method names refer to NIB, not XIB. When you pass around names, you never need to
(or should) specify the file extension anyway, so this is a distinction that you can largely ignore (unless you want to go spelunking into your .app
bundle).

What are .XIB Files

What are XIB files? From the point of view of the Ul designer, XIB files contain the views or windows that you design in Interface Builder - the controls,
their layout and properties, and their connections to your code.

It is important to understand that on a technical level, XIB files are stored object graphs. That means that an XIB file, essentially, is a hierarchical set of
objects descriptions. When an XIB file gets loaded at runtime, all the objects defined in the XIB file get instantiated, configured, and connected as
described in the XIB.

These objects can be a combination of standard framework classes (such asNSview/UlView, NSButton/UIButton, etc), classes from third party libraries, or
even classes defined in your own application code. When the Cocoa runtime loads an XIB, it goes through the list one by one, looks for the classes
with the appropriate names and news up the necessary objects.

Each XIB file also knows about a special object called the File's Owner". This object will not be created when the XIB is loaded. Rather, the object that

initiated the loading of the XIB file will take the place of the File's Owner within the XIB's object graph - including any connections and references to it.
We will see how that is useful and important, soon.

What are Storyboard Files?

Storyboards are essentially a next step inXIB file's evolution. Where XIB files usually contain a single view, storyboards contain more views
(sometimes even all the views for your app), along with information on how the user will navigatebetween these views, in form of "segues".

The .storyboard files you are working with when designing Ul are, similar to XIB files, simple XML files that the Xcode designer presents to you
graphically. When your app gets compiled, storyboards get broken down into individual .NIB files, just like XIB files do.

So whether you use XIB files or Storyboards, at runtime your application always contains .NIB files.

Working w/ XIBs & Storyboards

When and how do XIB files (or storyboards) get loaded? There are several possibilities:
NSMainNibFile

If your Info.plist contains an NSMainNibFile entry, the Cocoa runtime will automatically load up that NIB as your application starts up. The global
NSApplication/UlApplication instance will become theFile's Owner of the NIB, and every object in your NIB will be instantiated.

Similarly, if Info.plist contains a UIMainStoryboardFile entry (on iOS), the system will load the NIB for the view that was marked as entry view in the
storyboard, in the same fashion.

This mode is common for most Mac and iOS applications, and in fact you can see it in action in our Cocoa Application template(s). You probably
noticed that (aside from the startup code in the Program) the project contains anAppDelegate class that is usually used as the "launching point" for your
application's own code.

How does this AppDelegate class get instantiated? Easy: If you open theMainMenu.xib file in Xcode (the XIB that is specified to be theNSMainNibFile in
Info.plist from the template apps), you see that - among other pieces - it contains anAppDelegate item. This is your ownAppDelegate class.

initWithNib:*

For simple applications, you can get away with just putting all your stuff intoMainMenu.xib, but as applications get more complex, that's a bad idea, not
only because - as indicated above - when an XIB is loaded, all objects referenced in it are created. If your application contains dozens of windows or
views, you don't usually want all of those to be loaded up as your application starts.

Instead, it is common practice to pair individual XIBs for each view or window XIB with a matching ViewController or WindowController class - a
practice that you will see in just about all the iOS project templates, and also in the *Controller item templates we provide with Elements.

How does this work?

Simple: Your application will define a custom class, usually descended fromulVviewController (or NSViewController/NSWindowController) where you will put all
the application logic for that view or window. As far as your app is concerned, this class is your implementation for that particular view (or window -
for simplicity reasons we'll stick to talking about iOS views for now, but the same concepts apply for OS X views and windows).

In the initializer for your view controller, you will ask the base class to load up the XIB file that backs your view, for example by calling:

self := inherited initWithNib('MyViewController') bundle(nil);
this = base.initWithNib("MyViewController") bundle(null);
super.init(nib: "MyViewController", bundle: nil);

this = super.initWithNib("MyViewController") bundle(null);

This essentially tells the base class to initialize it by loadingMyViewController.xib (from the main application bundle) and creating all the objects defined
in it.

So all those objects get loaded up, but how do you then get access to them from your code? Simple: Remember when | said above that the object
loading the XIB becomes the File's Owner? When you load an XIB using theinitwithNib() call, your view controller class becomes theFile's Owner and any
connections you set up in the XIB between the File's Owner and the other elements in your XIB will be connected to your view controller class.

Connections

Did we say connections? So how does this work?
Easy, really. XIB files know about two basic kinds of connections between objects: Outlets and Actions.

You can think of outlets as references to other objects. If your view controller class has a property of typ&iButton, and your XIB file contains aulButton,
that's a match made in heaven. You can just Ctrl-drag the button onto the File's Owner (or vice versa) in the XIB to hook them up, and now you have
access to the UIButton from your code, because as the XIB gets loaded and theUiButton gets created, it gets hooked up to your property automatically.

Actions, you may have guessed, can be thought of as events. If something happens with the objects in the XIB (such as a button being tapped), they
send out events. Just as above, if your view controller exposes a method with the right signature (that is, any method with exactly one parameter of
type "id" or a concrete class), you can Ctrl-drag it into your XIB file to hook them up, and when the event triggers, that method is called.

Of course outlets and actions can be hooked up betweenany two objects inside your XIB, not just with the view controller. For example, you can cause
an action on one control to trigger a method on a different control.

Ok, so how does the XIB designer in Xcode know about the methods and properties on your view controller (or other classes)? Magic! As you write your
classes, Elements will automatically* update the XIB and Storyboard files behind the scenes, with information about all the relevant classes and their
properties and methods - i.e. any property marked "[IBOutlet]" and any method marked "IBAction]". As you work on your XIB file in Xcode, it sees this
information and makes the connections available.

If you need to expose a new control to your code or want to hook up a new event, simply add a new property or method to your code, and that's it.

Let's See This in Action

For this example, let's create a new "UlViewController with XIB" from the template and then add the following items to the "MyViewController" class:

[IBOutlet] property myButton: UIButton;
[IBOutlet] property myLabel: UlLabel;
[IBAction] method buttonTapped(aSender: id);

[IBOutlet] public UIButton myButton { get; set; }
[IBOutlet] public UlLabel myLabel { get; set; }
[IBAction] public void buttonTapped(id sender) { }

@IBOutlet var myButton: UlButton?
@IBOutlet var myLabel: UlLabel?
@IBAction func buttonTapped(sender: Any?) { }

@IBOutlet UIButton myButton { __get; _ set; }
@IBOutlet UlLabel myLabel { __get; _ set; }
@IBAction public void buttonTapped(id sender) { }

The following screenshots explore the XIB (and Storyboard) designer in Xcode:

Figure 1: On the left side of the window, you see a hierarchical view of all the objects in the XIB - this includes all visual objects (in this case just the
one UlView for now, but also other objects such as the File's Owner).

On the right side, the "Utilities View" has the "ldentity Inspector" pane activated, showing details about the selected object (the File's Owner). Note
that the XIB designer knows that File's Owner is a "MyViewController". It got that information from the template - but this is editable, so you can just type
in or select the right class name. Of course it should match the class that is loading this XIB at runtime.

Figure 2: We have dropped a couple of controls onto the view - you can see them both visually and in the hierarchy on the left. The right pane has
been switched over to the "Connections Inspector" tab, which shows all the connections available on our File's Owner. Among them, you see our two
properties and the method. There's also a "view" property (defined by theUlviewController base class), already connected to the root view.

Figure 3: Click and drag from the little circle right of the MyButton" name to the button to make a connection to theulButton. (You can drag to the
control on the design surface or to the "Button – Tap Me!" item in the hierarchy.)

Let go when you are over the button, and the connection is made. If you were to go and build your app now, the myButton property would give you
access to the button from code.

Figure 4: You can also drag from the hierarchy view to a control. When you let go, the XIB designer will present a list of all properties that match - in
this case the UlLabel qualifies both for "myLabel", and for the 'view" property (because UlLabel descends from UlView).

Figure 5: Connection actions work the same way. You can Ctrl-drag from the control to the receiver (here the File's Owner) to connect the default
action of that control (in this case, the button tap) to a method. As you can see, the Connections Inspector also shows a complete list of all actions that
can originate from the control, so you can, if needed, assign them all to individual methods.

Now all that's left to do is maybe write an implementation for ButtonTapped" such as this:

[IBAction]
method MyViewController.buttonTapped(aSender: id);
begin
myLabel.text := myButton.titleLabel.text;
end;

[IBAction]
public void buttonTapped(id sender)

myLabel.text = myButton.titleLabel.text;
}

@IBAction
public func buttonTapped(sender: Any?) {
myLabel.text = myButton.titleLabel.text

}
@IBAction
public void buttonTapped(id sender)
{
myLabel.text = myButton.titleLabel.text;
}

to see both actions and outlet access in - pun not intended - action.

What's "First Responder"?

Similar to File's Owner, 'First Responder" is another placeholder object exposed in the XIB file that has special meaning. The First Responder is not a
concrete object, but essentially refers to "the first object that has focus that can handle this".

By connecting actions to the First Responder, you can have them dynamically be sent to different parts of your application, depending on the state
your app is in. A good example is the "Edit|Copy" menu in a Mac application. If a text field has focus, you would expect the Copy command to apply to
the content of that text field. If a different control has focus, different content would be copied. By connecting the menu's action to the First
Responder's "copy:" method, Cocoa will take care of calling "copy()" on whatever control or view has focus - in fact, all you need to do to make
Copy/Paste work with your own custom view is to implement the corresponding methods, and they will get called if your view has focus as the user
invokes the menu item (or Cmd-C keyboard shortcut).

Summary

This article gave you a quick introduction to XIB files and how they work. A good 95% of the content of this article is not really specific to Elements; the
same concepts and techniques apply to working on XIB files with Objective-C or Swift in Xcode - that's by design, because Elements is a true first class
citizen on the Cocoa frameworks and Objective-C runtime.

Profiling with Instruments

One of the greatest tools in Apple's tool chain is the profiler.

Profiling is an essential debugging tool for every developer, whether you want to tune the performance of a particularly time-sensitive piece of code,
or drill into some memory issues (be it leaks or general memory load). With ARC, just like with Garbage Collection on .NET or Java, regular object leaks
are rare, but one scenario where they can still happen (opposed to GC) is with so-called Retain Cycles — where object A holds on to object B, and vice
versa.

Because Instruments is such an essential tool for the Cocoa developer, we have deeply integrated support for it into the Oxygene tool chain as well,
and I'd like to demonstrate that in a quick (only somewhat contrived) sample.

Let's say you have the following code:

type
DummyData = class
private
fData: NSMutableArray;
public

method init: id; override;
method Work; empty;
end;

DummyDataltem = class

private
fOwner: DummyData;

public
property owner: DummyData read fOwner;
method initWithOwner(aOwner: DummyData):

d;

end;
implementation

method DummyData.init: id;
begin
self := inherited init;
if assigned(self) then begin
fData := new NSMutableArray;
fori: Int32 := 0 to 1000 do
fData.addObject(new DummyDataltem withOwner(self));
end;
result := self;
end;

method DummyDataltem.initWithOwner(aOwner: DummyData): id;
begin

self := inherited init;

if assigned(self) then begin

fOwner := aOwner;

end;

result := self;
end;

public class DummyData
{
private NSMutableArray fData;

public override id init()
{
this = base.init();
if (this !'= null)
{
fData = new NSMutableArray();
for (inti=0;i < 1000; i++)
fData.addObject(new DummyDataltem withOwner(this));

return this;

}

public void Work() {}
}

public class DummyDataltem

{

DummyData fOwner;

public DummyData owner { get { fOwner } }
public id initWithOwner(DummyData aOwner)
{

this = base.init();

if (this != nil)

{

fOwner = aOwner;

return this;
}
}

public class DummyData {
private var fData: NSMutableArray!

init() {
fData = NSMutableArray()
forvariL Int = 0; i < 1000; i++ {
fData.addObject(DummyDataltem(owner: self))
}
}

public func Work() {
}
}

public class DummyDataltem {
private var fOwner: DummyData;

public var owner:DummyData {
return fOwner

}

init(owner: DummyData) {
fOwner = aOwner;
}
}

Looks innocent enough. bummyData holds an array ofDummyDataltems it initializes on creation; the code (naively) assumes the array and everything
else to be released when the bummyData object itself goes out of scope.

Except it doesn't, and your customer calls to complain that the app's memory footprint is growing. How do you find out what's going on? Instruments

to the rescue.

In Elements for Cocoa, Instruments is available right from inside Visual Studio and Fire. We've added a new menu item to the Debug" menu (and you
can also add it to the toolbar of course): "Start With Instruments" (Visual Studio) and 'Run w/ Instruments" (Fire):

Hit that and Elements will build your app (if necessary), and via the magic of CrossBox, you'll see Instruments popping up, Mac side — by default

asking you what kind of analysis you want to perform:

Select "Leaks" and that will open an Instruments document, and also start your application running. Play around with the app and trigger the code
paths that lead to the memory increase. In the Instruments window, you san see what's happening, live — the overall memory load of the app keeps

increasing (as shown in the "Allocations" instrument):

Quitting the app and selecting the "Leaks" instrument shows all the memory that was leaked — that is, not properly released. The picture is quite clear
— it seems that 31 DummyData instances were created and never properly released. What's up with that? After all, your code that creates
DummyData is dead simple:

method MainWindowController.buttonClick(aSender: id);
begin

var d := new DummyData();

d.Work();
end;

void buttonClick(id sender) {
DummyData d = new DummyData();
d.Work();

}

func buttonClick(sender: Any?) {
let d = DummyData()
d.Work()

}

d goes out of scope right after it's used, and that should release the object, right?

Fold open one of the DummyData items in the list and click on the little arrow next to its address to drill into its retain/release history. You'll see a huge
list of roughly a thousand calls to retain. The call stack on the right tells you these happen from within DummyDataltem.initWithOwner:. That makes sense
— your code creates a thousand of them, after all.

At the very end of the list, you see that frombuttonClick your DummyData is being released though.

What's going on? Shouldn'td going out of scope release the array, which in turn releases theDummyDataltems, which in turn... wait, we're getting close
to the problem! It looks like our data structure contains what is called a "retain cycle". The DummyData holds on to theNSArray, which holds on to the
DummyDataltems which, in turn, hold on to thebDummyData itself. Even though d is going out of scope, its retain count is only going down to 1001,
because all the DummyDataltems still have references. As a result, the DummyData object actually never gets freed, and neither does theNSArray or the
DummyDataltems inside it, which, in turn, can never give up their hold on thebummyData itself.

Though in this case we found the issue fairly quickly, Instruments has one more tool up its sleeve to make it even easier to find retain cycles: Click on
the "Leaks" item in the navigation bar and select "Cycles & Roots":

<

Instruments has actually detected any retain cycles for us and shows them in a list (in this case, 31 of the same), along with a nice graphical
representation of what is going on.

From this view (even without our previous investigation), it becomes immediately clear that the fOwner reference from DummyDataltem back to
DummyData is the culprit.

How do you break this vicious circle (assuming you cannot simply drop the owner reference altogether)Weak references to the rescue!

type
DummyDataltem = class
private
fOwner: weak DummyData;

public class DummyData

{
private _ weak NSMutableArray fData;

public class DummyData

{
weak var fData: NSMutableArray?

By default, all variables and fields in Elements (and Objective-C withARC) are strong — that means when an object is stored in the variable, its retain
count is increased. By contrast, weak references just store the object without affecting retain count. In fact, they do one better: they also keep track of
the referenced object and automatically get set to nil when said object is released — so you never have to worry about the variable pointing to a stale
object (which is a big problem in non-ARC languages).

Sidebar: A third type of object references are so-calledunretained references. These behave like regular pointers in old-school languages; they store the
object address, and when the object gets released, that address will be stale — your code will be responsible for worrying about that.

With the code fixed, hit the 'Start With Instruments" menu again. Your app will launch and Instruments will profile, and as you work with your app,
you will notice that the memory load now stays down — as originally expected.

Of course, the Leaks pane will remain empty, but just to confirm, you can select the "Allocations" instrument, select "Created & Destroyed" in the
sidebar and then locate and drill into one of the DummyData objects. As you can see, the retain/release history is much more sane now — no 1000
extra retains from DummyDataltem — and the object actually was released at the end obuttonClick.

Success!

Summary

We've had a quick look at how Instruments works and can be used to inspect memory allocations (the first phase of the investigation above does not
just apply to bona-fide leaks and retain cycles, but can also be helpful if you just want to get a general impression of what memory your app is holding

on to, and why), learned about retain cycles and the weak, 'strongandunretained” Storage Modifiers, and we have also seen how Instruments can be
used from Elements.

See Also

e Retain Cycles

o Automatic Reference Counting (ARC)
e Storage Modifiers

Storage Modifiers

On the Cocoa platform, which uses ARC rather than Garbage Collection for memory management, threeStorage Modifier keywords are available to
control how object references are stored in local variables, fields or properties.

By default, all variables and fields arestrong - that means when an object is stored in the variable, its retain count is increased, and when a variable's
value gets overwritten, the retain count of the previously stored object gets reduced by one.

Storage modifiers can be used on type names in:

o local variable and field declarations,
e property declarations,
e method parameter declarations.

The strong, weak and unretained storage modifiers are available in all languages:

Oxygene C# Swift Java
strong __strong strong __strong
weak __weak weak __weak

unretained __unretained unretained __unretained

These modifiers are only available for theCocoa platform and cannot be used in .NET and Java projects unlessCross-Platform Compatibility is enabled,
in which case they are ignored on .NET and Java.

Strong

strong storage is implied as default whenever referencing types without any of the other two storage modifiers. The following two variable or field
declarations therefore are the same:

var name: NSString;
var name: strong NSString;

NSString name;
__strong NSString name;

var name: NSString?
strong var name: NSString?

NSString name;
__strong NSString name;

Weak

Optionally, weak references store the object reference without affecting the retain count. In addition,weak references also keep track of the
referenced object and automatically will get set to nil/null when said object is released — without any interaction from your own code. This makes
weak references ideal to hold on to an object "for as long as it stays around", without having to worry about stale object pointers.

The most common use for weak storage is to avoid Retain Cycles, where one object holds on to another and the second object also references the
first.

var name: weak NSString;
__weak NSString name;
weak var name: NSString?

__weak NSString name;

Unretained

A third type of object references are so-calledunretained references. These behave like regular object pointers in old-school languages: they store the
object address and do not keep track of the objects life cycle.

When the object gets released at a later point in time, anunretained reference will point to stale memory. For this reason,unretained is the most
seldom used storage modifier, and should only be used in controlled scenarios when your code has exact control or knowledge about the life cycle of
the referenced objects. The upside of unretained is that it has anever so slight performance benefit over weak.

var name: unretained NSString;
__unretained NSString name;
unretained var name: NSString?

__unretained NSString name;
See Also

Automatic Reference Counting
Retain Cycles

Storage Modifiers (Oxygene)
Storage Modifiers (C#)
Storage Modifiers (Java)

e o o o o

Pointer References

There are essentially three ways in which Objective-C APIs pass objects references.

ObjC Oxygene C# Swift
NSObject *obj obj: NSObject NSObject obj obj: NSObject

ObjC Oxygene C# Swift
NSObject **obj var obj: NSObject ref NSObject obj var obj: NSObject
NSObject *obj[] obj: “NSObject NSObject *obj obj: UnsafePointer<NSObject>

Like most modern languages, all Elements languages omit the explicit "pointer" syntax ¢ in Pascal, * in C) on class pointers, using just the class name
to represent the type and implying automatically that the type is heap based. This comes natural to today's Pascal developers and matches how
Oxygene and C# behave on .NET and Java, and how Swift behaves. Delphi too handles class types this way. By contrast, Objective-C, C++ and older
Borland Pascal/Turbo Pascal dialects used or still use ~ (or *) to denote heap-based objects.

This topic explains how Objective-C-style pointer references map to the Elements languages.

1. Plain Object References

Therefore, the first reference type listed above is the standard way of passing of an object to a function, anadisObject * simply maps to, say,

method foo(obj: NSObject);
void foo(NSObject obj) {
func foo(obj: NSObject) {

2. var/ref inout’ Parameters

The second syntax is used by Objective-C to pass objects "by reference", usually in order let the called function replace the object, or return a new
object where none was passed in. All Elements languages have their unique keywords for expressing this concept. The second variant, out/_out, only
differs in semantics to emphasize the unidirectional nature of the by-reference variable.

e var and out in Oxygene,
e ref and out in C# and
e inout and _ out in Swift.

So the NSObject ** syntax maps to, say:
method foo(var obj: NSObject);

void foo(ref NSObject obj) {

func foo(inout obj: NSObject) {

So note:

Elements will allow nil to be passed to by-reference parameters on the Cocoa platforms only. On .NET and Java, a valid variable must be passed.
You can use assigned(@obj) to verify if a valid reference value was passed. This will returnfalse, even if the reference itself isnil.

It will always be safe to evaluate or assign to thevar parameter, even if nil was passed in.

The Oxygene [Colon Operator](/Oxygene/Expressions/MemberAccess (:) and C#/Swift "Elvis" Operator (?.) can be safely used on parameters, so
obj:description or obj?.description respectively will validate that bothassigned(@obj) and assigned(obj) are true, before calling into description.

o o o o

3. True Object Pointer Parameters

The third Objective-C syntax above is equivalent to the previous on a technical level, but has different implications in how the passed reference will be
accessed inside the called method, in that commonly not just a single object reference is passed in, but an in-memory array of consecutive object
pointers. The NSObject *obj[] syntax maps to:

method foo(obj: “NSObject);

void foo(NSObject *obj) {

func foo(obj: UnsafePointer<NSObject>) {

Both the address of an object (@someObject in Oxygene, &someObject in C# and Swift) or adynamic array of objects can be passed into this type of

parameter.

4. Dynamic Array Parameters

In addition, Elements of course also allows the declaration of truedynamic array parameters such as:
method foo(obj: array of NSObject);

void foo(NSObject[] obj) {

func foo(obj: NSObject[]) { // not to be confused with [NSObject]

Here, a true reference-counted dynamic array is passed into the function, and this call has no equivalent in Objective-C, since dynamic arrays are
unique to Elements.

Debugging

Elements comes with its own sophisticated debug engine for running, testing and debugging projects on the Apple platform, including Mac projects, as
well i0S, tvOS and watchOS applications on device or on the Simulators provided by Xcode and the SDKs.

e Debugging Mac apps - macOS and Mac Catalyst
e Debugging on Device - iOS, tvOS
e Debugging in the Simulator- iOS, tvOS, watchOS

All debugging happens on a Mac, or a device connected to a Mac (via USB or WiFi), so if you are working from Windows, &rossBox connection to a
Mac is needed.

See Also

o Debugging with Fire and Water

e Debugging with Visual Studio
e Connecting to CrossBox

Debugging on the Mac

Yo can debug yourmacOS and Mac Catalyst projects on your Mac, directly fromFire or remotely from Water or [Visual Studiol(/Visual Studio).

macOS Projects

macOS projects are projects ste to build directly for macOS and it's APIs, including low-level frameworks such as Foundation, and higher-level Ul
frameworks such as AppKit. macOS projects can run and debug only on the Mac.

In Fire, "Mac" will automatically be selected as the default run destination in the CrossBox device picker. I'WWater or [Visual Studio](/Visual Studio),
you must select (or newly connect to) a remote Mac, first.

Once done, simply select "Run" ("Start" in Visual Studio), or press3R (Fire) or Ctrl+R (Water) or F5 (Visual Studio) to run your app. When developing
on Windows, your appl will first be transfered to or updated on the remote Mac (parts may already be there from the build), before it launches.

Architectures

By default Mac apps build for the architecture of your local Mac -armé64 for newer Apple Silicon-based Macs, andx86_64 for older Intel-based Macs, so
that they will run natively.

On Apple Silicon-based Macs, you can optionally also debug the x86_64 version of your project in the Rosetta 2 translation layer. This can be useful of
your application contains architecture-specific code or behaviors that need to be tested separately, or to debug problems specific to the Intel build of
your app.

With a Mac project open, you will find that in addition to the local Mac" entry in ther CrossBox device picker, you will also see a second entry named
"Mac (Rosetta)". Selecting this item as the target device will force your application to run it's x86_64 slice in the translation layer.

Note that you will need to manually change your project to include thex64_64 architecture in Project Settings for tis to work. Also note that if you set a
project to build only for x86_64, it will always run under Rosetta.

No translation forarmé4 binaries is available on Intel-based Macs, so you willomly be able to run and debugx86_64 binaries on those machines
(although you can of course build fromarmé4, for deployment.

Mac Catalyst Applications

Mac Catalyst apps are projects that targetiOS and use the UIKit based GUI frameworks, but are set to optionally also run as native(-ish) Mac
applications (not to be confused with iOS apps themselves that can be run on Apple Silicon-based Macs).

Mac Catalyst can be enabled in your iOS project by setting the SupportMacCatalyst" Project Settings to True. Once done, 'Mac" becomes available as an
option in the CrossBox debice picker, next to your real devices and Simulators. Selecting this option and running will build your app for the "Mac" Build
Destination and run it locally on your Mac.

Note that the Mac Catalyst build of your app is not the same as your regular iOSM (or Simulator) built, even thou it uses a very similar set of
frameworks, and might be targeting the same architecture(a). Mac Catalyst apps have access to additional APIs to make apps more "Mac-like", and
you can check for Mac Catalyst vs iOS speciifc code both at compile-time (e.g. if defined("MACCATALYST")) and runtime (e.g. checking
UlDevice.current.userinterfaceldiom for Mac).

iOS Applications on Apple Silicon

While Apple Silicon-based Macs allow installing and running iOS (non-Mac Catalyst) apps from the App Store, it is currently not supported to run and
debug apps in this mode. To test your iOS apps, you must either use a Device or Simulator, or a dedicated Mac Catalyst build as mentioned above.

Debug Engines

Elements ships with two debug engines for Cocoa project: the legacy LLDB debug engine and the new Island debug engine.

The legacy LLDB debug engine uses Apples standrad LLDB debugger internally. it is supported fofoffee projects and on Intel-based Macs only. It is
the default debug engine on older macOS versions before Big Sur.

The new Island debug engine was developed fully in house, and provides support for both Objective-C ("Cocoa") and IslandOnative object models (as
well as, in the future, Swift ABI). It is the default engine on Big Sur and later, and the only debug engine available when working on an Apple Silicon-
based Mac.

Where applicable, you can toggle between the two engines inProject Settings via the Debug Engine setting.

See Also

o Debugging on Device

e Debugging in the Simulator

e Debugging with Fire and Water
o Debugging with Visual Studio

e Connecting to CrossBox

Debugging on Device

You can debug youriQOS, tvOS and visionOS projects directly on device, running as they would for your users, with a device that is connected to your
Mac by USB or WiFi.

Prepare for Debugging

There are a few things that might need to get set up before you first develop on a particular device.

Trust the device

When a device is first connected to a Mac, it restricts what the Mac can do via USB, until yourust it. Your iOS or watchOS device will show a message

asking you whether you want it to trust the connected computer, and only after you confirm can the device be used for debugging (and most other
tasks you would want to do when connected).

Getting Device Support

iO0S, tvOS, visionOS and watchOS Devices often run slightly different versions of the operating system than Xcode ships support for.

When you first start working with a device, or if you updated to a new version or a new beta of the Operating System (even a minor new version, such
as from 14.4 to 14.4.1), you should launch Xcode, open the Device Manager (8 12) and let Xcode download support files for the exact version of the
OS you are running.

Only after the yellow bar at the top of device manager disappears can will you get the full debugging experience. Without this step, you will be able to
run your apps, but you might get incorrect stack traces, as the debugger can not resolve symbols for the OS binaries on device.

Allow WiFi Debugging

On this same screen you can also enable your device for debugging via WiFi, without USB cable connection to your mac, by checking theConnect
via Network" option.

Once checked, you can unplug your device, and it will still remain available for debugging.

Do note that tom preserve battery, your debice will not remain connected to your Madndefinitely if your devices screen turns off or your device goes
out of range of the Mac for a prolonged period of time, you will see it disappear from the CrossBiox device picker in the IDEs (or show as "(not
connected)", if it is selected as the active device for tour project.

Usually, just turning the device back on and unlocking it close to your Mac should make it reconnect; if that fails quickly connecting it via USB for a few
moments should do the trick.

Project Requirements

While you can runany code you like on your Mac or in theSimulator, deploying apps to your device requires a properProvisioning Profile and Code
Signing Certificate set up for your project. Please refer to the two before-linked topics for details.

Note that profiles and certificates differ between those used for debugging (or simply side-loading onto device_ anddeployment (whether via the App
Store, TestFlight or otherwise).

It is common to set your 'Release" configuration to use your deployment profile and certificate, and the bebug" configuration to se the debug ones - but
these configurations are convention, you can name or set this up differently, if you prefer.

Let's Debug

With these things our of the way, you are ready to debug your project. Simply select the device yu want to debug on from the CrossBox menu and
select "Run" fromm the 'Debug" menu in Fire or Water @R or Ctrl+R), or press "Start" in Visual Studio (F5).

Your project will be built (if needed), and deployed to your device. If you are working from Windows, it will be uploaded to the Mac, as an intermediate
step.

Read more about:
e Deploying from Fire and Water

o Debugging in Fire and Water, in general
o Debugging in Visual Studio, in general

Troubleshooting

in Fire and Water, the Build Log will start to extend beyond the build itself, and update to show details about the deployment and launch of your
application. This is a good place to look for more detailed information about what the problem is if deployment or launch of your app failed.

Common scenarios are

e Your device got locked while building or deploying (or you never unlocked it); simply unlock it, run again, and maybe keep a finger on the screen
to keep it from locking.

e Your Provisioning Profile and/or Certificate do not match, do not contain your device, or you are using the wrong (e.g. deployment) versions.

See Also

e Debugging in the Simulator

e Debugging Mac Catalyst Apps
e Debugging with Fire and Water
o Debugging with Visual Studio

e Connecting to CrossBox

Debugging in the Simulator

In addition to debugging on a real physicalDevice like an iPhone, iPad, iPod touch or Apple TV, you can also debug youtiQOS, tvOS and visionOS apps in
a Simulator running on your Mac.

In this mode, a separate build of your app will be made that will run natively on your local computer. Debugging in the Simulator can be helpful for
efficiency and speed reasons, but - for obvious reasons - does not give the fukll experience and fidelity as running on real hardware, which has
different capabilities, sensors and performance characteristics.

Prepare for Debugging
On installation, Xcode will have created a bunch of pre-defined Simulators for various device and OS combinations. You can view, edit and add to

these simulators in Xcode's Device Manager, available via 38 12:

All these Simulators will automatically show in the CrossBox device picker inFire. In Water or [Visual Studio](/Visual Studio), you must select (or newly
connect to) a remote Mac, first.

Once done, simply select "Run" ("Start" in Visual Studio), or press3R (Fire) or Ctrl+R (Water) or F5 (Visual Studio) to run your app. The IDE will
automatically boot up the requested Simulator (of not already open from a previous run), install your app, and launch it.

When developing on Windows, your app will first be transfered to or updated on the remote Mac (parts may already be there from the build), as an
intermediate step.

Troubleshooting

Just as when debugging on a Device, the Build Log in Fire and Water, will start to extend beyond the build itself, and update to show details about the
boot process of the Simulator, deployment and launch of your application. This is a good place to look for more detailed information about what the
problem is if deployment or launch of your app failed, of the Simulator fails to boot.

See Also

Debugging on Device
Debugging Mac Catalyst Apps
Debugging with Fire and Water
Debugging with Visual Studio
Connecting to CrossBox

e o o o o

Deployment

This section collects information about deploying applications created with the Cocoa edition of Elements, in various scenarios.

e Submitting to the iOS App Store

Submitting to the iOS App Store

The final goal of all your work with an iOS app is probably to submit it to the iOS App Store for distribution - whether it's for sale or as a free app.

Doing so is relatively straight-forward, but does involve a few steps worth outlining here. In principle, these are the same steps when you use
Elements as those performed by developers using Apple's own Xcode IDE, so any tutorials or information you find about App Store submissions online
will more or less apply to you as an Elements developer, as well.

Refer to Apple's App Distribution Guide as the official documentation for this process.

App IDs, Profiles and Certificates

Since you have been working and testing your iOS app, you will already be familiar with the concepts of App IDs, Provisioning Profiles, as well as Code
Signing Certificates. For your local development, you have been using a Development Profile and a Development Certificate to build the app for your
devices. Maybe you set these up yourself, or maybe you have let Xcode create them for you when you first connected your device.

For App Store distribution, your first step is to create a dedicatedDistribution Profile and a Distribution Certificate. If you have been using the default
App ID, you might also want to consider setting up a dedicated App ID for your application, with a unique reverse-name ID string.

All of these tasks are performed on theCertificates, Identifiers & Profiles page of Apple's developer portal, which has become a bit tricky to find a link
to recently, but is available via the link above, and also from Fire's "Tools|Cocoa" menu.

Creating an App ID

As mentioned before, this step is optional, but recommended. If you decide to create a dedicated App ID for your app, you will most likely do this early
in the development process, and not just shortly before submission.

To do so, click in the 'ldentifiers" link underneath the 'i10S Apps" headline on the page mentioned above. You will see a new view with App IDs"
active on the left, and a list of already configured IDs on the right. Click the "+" button at the top right to create a new ID.

You will be asked to provide a description (this is for your internal use, to recognize the ID later), as well a Bundle ID, which should be in reverse
domain notation (e.g. "com.yourcompany.yourproduct").You can choose for the Bundle ID to be "explicit" or "wildcard". An explicit ID contains a full bundle
ID that will match exactly one app, while a wildcard ID ends with .* and can be shared by multiple apps.

Near the bottom, you can also enable certain platform services from your App, such as iCloud support, HealthKit access, and the like. Some features
(such as Push Notifications) are only available for apps with explicit IDs.

Once you're happy with your setup, click 'Continue" to save your App ID.
Creating a Distribution Certificate

Next, click on the '"Production link under "Certificates", and once again click the small "+" button in the top right, this time to add a new certificate.
Select the "App Store and Ad Hoc" option and press Continue, and then follow the instructions displayed to create your Certificate. These include
running the Key Chain Access tool on our Mac, creating a Request, uploading that request and then downloading the generated certificate. Once done,
double-click the downloaded certificate file to install it in your local Key Chain, where Elements (and Xcode) will automatically find it.

Creating a Distribution Profile

Finally, click on "Distribution" under "Provisioning Profiles" in the sidebar and - once again - click the %" button. Choose the "App Store" option
and press "Continue". On the next couple of pages, you will be asked to choose an App ID (pick either one you created above, or a wildcard) and the
certificate to use. Finally, you'll be asked for a descriptive profile name (make sure to pick one that is unique), and then you can download the profile.

As with the certificate, simply double-click the downloaded file on your mac, and it will be installed. Fire, Visual Studio and Xcode will find it
automatically.

iTunes Connect

With the steps created above you'd be ready to build your app for distribution, but to actually submit it to the App Store, you will need to visit a second
website to set up the actual shop details. Let's get this out of the way first, before going back to Fire or Visual Studio.

Point your browser toiTunes Connect at https://itunesconnect.apple.com, log in with your Apple ID and click on the My Apps" icon. A view comes up that
shows all the apps you have already configured for the App Store - if you are reading this, it is probably empty.

Click the "+" Button in the top left and choose 'l0OS App" from the dropdown.

A dialog comes up asking you for some details, the most important being the name (this will be the actual name that shows in the App Store for your
app), and the Bundle ID (you can choose from all the App IDs configured in the developer portal, as seen earlier). When you click "Create", iTunes
Connect will verify everything is in order, and you're done: the App Store is now ready for your submission.

Building your App for App Store Submission

It's time to leave the web browser and get back to your favorite IDE and build the binary for distribution. Assuming your App development has been
going great and your app's code is all ready to go, these will just be a few simple steps.

Open your project in Visual Studio or Fire and go toProject Settings. There's a couple of options you will want to adjust in order to get your app to build
form distribution.

As you know, Elements allows you to define project settings for differentConfigurations, and by default each new project comes with aDebug and a
Release configuration. You have probably been using the former as you worked on and tested your app, and that is great. We recommend to keep that
one set to your development settings, and update the Release configuration for distribution. Here's how.

First, set the "Provisioning Profile" and "Certificate Name" settings to the newly created profile and certificate. If they don't show up right away,
you might need to refresh the list (Visual Studio has a Refresh button, while Fire has a "Refresh Options" item in the drop-down). Again, make sure to
set these options for the Release configuration.

Next, locate the "Create .ipa File" option and enable that, as well (check the box in Visual Studio, or set the option toYES" in Fire).

You should check the "Bundle Identifier" setting to make sure it matches the Bundle ID you want to use, and that you specified for your App ID. If
your Bundle ID does not match, App Store submission will fail. What's more though, once you submit your first binary, you cannot change the Bundle
ID later on - so make sure you start out using the proper ID you want, as you will be stuck with it for the rest of your App's life on the store.

Finally, you should review the Info.plist file in your project top make sure you're happy with all the information in there. In particular, make sure the
CFBundleVersion is the right number (probably 1.0 for your first submission, oro.1 if you're submitting a beta), and thatCFBundleDisplayName, if set, has
the proper name you want your app icon to show on the home screen. (If CFBundleDisplayName is not set, Elements will set it to match your project's
executable name.)

And with that, you're ready to build. Make sure to activate theRelease configuration in the drop-down box in Fire or Visual Studio's toolbar, and hit
Build. When all is done, you will see the release version of your .app bundle in the bin/Release folder, alongside an .ipa file (which is essentially a zipped-
up version of your .app, with some extra meta-data). This IPA is ready to be submitted to the App Store.

Upload to the App store

To upload the IPA to the store, you will use Apple's 'Application Loader" App. If you are using Fire, you can conveniently launch this App from Fire's
"Tools|Cocoa" menu. If not, the easiest way to get to it is to launch Xcode on your Mac and go via theXcode|Open Developer Tool" menu.

Application Loader presents two big options in the center. Select the left one, Deliver Your App" and press "Choose". Up comes a standard
File|Open dialog, where you can browse for your IPA and upload it. Follow the instructions on screen to answer a few questions, such as which App
Store app the binary is for, and then Application Loader will verify and upload your IPA.

Verification will be done both before the upload (locally) and after (by the App Store server), and either step may generate warnings (e.g. point out
minor inconsistencies you may want to address for the next upload) or failures (e.g. something that is wrong with your binary that will prevent the app
from being submitted as is).

Common pitfalls include:

invalid architectures (build forarmv7 and armé4, unless you know what you're doing)
mismatched Bundle ID and Profile/Certificate

invalid information in Info.plist or the Entitlements file

accidentally building against a Beta SDK

e o o o

Hopefully, your upload will go well and you will be notified by a nice and friendly "ding". Which means it is time to head back to iTunes Connect to
finish your submission.

iTunes Connect, Revisited

Go back to the 'MyApps" view oniTunes Connect again, and this time click the big icon of your app, which showed up in the main view after you
configured it above.

You will see a tabbed view with details for your app, with the left-most Versions tab being active and showing your version "1.0". You will need to fill
in most of the fields in this view with details about your app - including a description, keywords and screenshots for the different device types you
support.

If you scroll all the way down, you will see a section called Build". If you have successfully uploaded an IPA with Application Loader before, you will
see a "+" button that will let you select which binary (in theory, you might have uploaded more than one) to use for this version. Click that, and select
the version you just uploaded.

Once you're happy with all the details about your app, click the Submit for Review" button at he top right of the page. The App Store server will do
some more verifications (including checking that all the data you entered is valid and more checks on your binary). If all goes well, your app will be
submitted for review.

Your next step now is to sit back, relax, and wait theaverage of 7 days it takesfor Apple to review and (hopefully) approve your app. That, or get
started on those features for version 1.1.

See Also

e Apple's App Distribution Guide
o Certificates, Identifiers & Profiles
e iTunes Connect

Toffee Vs. Island

The Elements compiler has two compiler back-ends that support building Cocoa projects.

e The Toffee compiler is the current default back-end for Cocoa projects, and it directly and exclusively targets the Objective-C runtime that is the
back-bone of Apple's platforms. Binaries compiled with Toffee will be virtually indistinguishable from those created with Apple's Clang compiler
for Objective-C.

e The Island/Darwin back-end is allows you to mix Objective-C code with Elements' own object model (shared between all the Island-backed
platforms) as well as (in the near future) the new Swift object model.

Benefits of the Toffee Mode

Toffee is the current default back-end for targeting macOS, iOS and the other Apple platforms. It has been around for over a decade, is time-proven
and well tested on all platforms. Many of our own internal and external projects and products are compiled using Toffee, including the significant code
base that makes up our Fire IDE.

o Maps directly to Objective-C, so your generated projects are as indistinguishable as those created with Xcode and Clang as they can get.

Drawbacks of the Toffee Mode

No support for interfaces on Structs

No access tolsland RTL

No access to the Island Object Model - all objects are Cocoa classes descending fromNSObject
No access to (forthcoming) Swift Object Model

e o o o

Benefits of the Island/Darwin Mode

Newer compiler infrastructure

Fewer platform limitations (e.g. such as interfaces on records/structs) than on Toffee
Access to theIsland RTL API, for easier code sharing with other Island platforms.

Mix more efficient Island Object Model classes with Cocoa classes seamlessly.

o In the futurel, access to Swift Object Model types, including Swift-only Apple Frameworks.

e o o o

Drawbacks of the Island/Darwin Mode

e Rougher and less-well tested compiler toolchain
¢ Internals can be "more messy" and feel less native Cocoa-like, when mixing Island and Cocoa object models
e (For now) no watchOS support due to limited threading APIs that prevent the use of our GC.

Which Back-End Should You Use?

Right now, Toffee is the right back-end to use if your main goal is to create a native macOS, iOS, tvOS or watchOS GUI application or library.

It provides you with access to all the Cocoa APIs and lower-level C APIs you need and is well-tested and widely used internally and by other Elements
users. The executables and code generated with Toffee will be as close to that generated by Xcode and Clang as can be imagined.

Toffee code runs closer to the Objective-C runtime, because every class you create is a pure Cocoa class, andElements RTL on Toffee is designed on
top of Cocoa APIs, for example toll-free bridging types such as List and Dictionary to Apple-provided Foundartion types.

The Island/Darwin back-end is the right option to use if you are porting existing Island/Windows or Island/Linux code, or starting a low-level project
targeting all three of those platforms where having the same type semantics provided by the shared Island Object Model and the availability of the
Island RTL APIs is helpful. (Of courseElements RTL provides a common set of APIs, forall platforms that is worthy considering, if the shared API is the
main driving factor).

"ToffeeV2" Mode

Our long term goal is to move all Cocoa development to thelsland/Darwin back-end. A "best-of-both-worlds" mode called "ToffeeV2" is provided to
make this migration easier.

ToffeeV2 mode can be enabled by setting the Use Toffee V1" setting in a Toffee project to False (it defaults to True).

ToffeeV2 mode will switch your project to use the Island/Darwin back-end, but should let most existing Toffee code compile as is, by tweaking the
default assumptions. For example, just as in regular Toffee mode, classes that do not specify ancestor or an Object Model will default to Cocoa rather
than Island classes.

Please read more about ToffeeV2 mode here.

Overview
There are four steps between "Toffee" and pure "Island":

Mode/Setting Compiler User-declared Classes are? Elements RTL?

Most Elements RTL types map to native
Cocoa classes, for toll-free inter-op with
the SDKs.

Everything is Cocoa and every class is an Objective-C runtime

Toffee Toffee (wcocoa”) class.

User-declared classes are Cocoa by default; you can interact with
ToffeeV2 Island Island classes, and mark your own classes with the [Island] attribute Elements RTL still maps to Cocoa objects.
to make them Island native classes.
Elements RTL now maps to Island RTL
Island User-declared classes are still Cocoa by default. objects (e.g. List<T> is not an NSArray, but
maps to the List from Island RTL).

Island +
DefaultObjectModel=Cocoa

User-declared classes are Island by default. You can still interact
Island Island with Cocoa classes, and mark your own classes with the [Cocoal Elements RTL maps to Island RTL objects
attribute to make them Objective-C-native classes.

See Also

o Toffee Compiler Back-End
o Island Compiler Back-End
e Object Models on Island

e Default Object Model Compiler Option

1. Swift runtime object model support will be added once Apple Swift has stabilizedboth its ABI and its Module format. In theory, this features has
been delivered by Apple in late 2019, but it is not very well documented and we have doubts about its long-term stability. We are slowly
investigating and adding support for it, over time. &

Legacy Cocoa Mode

In the future, the classic '"Toffee" platform for creating applications for the Cocoa platform is being migrated to use the newlsland/Darwin compiler and
tool chain back-end. This will enable better interoperability with Island and Swift Runtime objects, provide other under-the-hood benefits and
improvements, and eliminate the overhead of supporting two separate tool chains for Cocoa.

Right now, the new mode is inactive, and can be enabled by explicitly setting theUseLegacyToffeeMode project setting to False. The setting currently
defaults to True. The default will change once the new mode is fully functional and compatible, and the option will be removed completely eventually,
when the legacy Cocoa mode will be discontinued (probably not for quite a while).

Disabling UseLegacyToffeeMode in a Cocoa project (or project target) has the following effects:

The effective Mode during bulld will be 'Island" and the SubMode will be "Darwin".

The SDK, if not set explicitly, will be se to the origial sub-mode (e.g. {0S", "mac0s", etc.)

the Default Object Model setting will be set to ocoa".

The COCOA, TOFFEE and (new) TOFFEEV2 Conditional defines will be set (as will belSLAND (!!)).

Reference resolving will be instructed to consider "Toffeev2" subfolders when looking up library referendes such asElements RTL, with priority
over the "Island/Darwin" ones.

« Reference resolving will ignore references tolibToffee, which is no longer required.

e o o o o

By the combination of these effects, existing "Toffee" Cocoa projects should compile and act mostly as they did before, even though they are now
using the newer Island compiler backend. In particular, classes and interfaces will still default to Objective-C runtime types (the only type supported by
the old Cocoa mode). But there are a few differences:

e Cocoa code now has access to Island classes, includinglsland RTL, GoBaselLibrary and any second or third party Island libraries.

o Island code can be intermixed within the Cocoa project seamlessly, if needed.

* Swift Projects now reference the Island-native version of theSwift Base Library, which is relieved from some limitations of the Toffee Cocoa
compiler back-end (such as no interfaces on structs).

« Once availablel, Cocoa code will also have access to Swift Runtime classes.
Some caveats include:

e The ISLAND define will now be set, even for Cocoa projects. Cross-platform projects that useconditional compilation using the ISLAND and TOFFEE
or COCOA defines might need to be reviewed to change the order the defines are checked or add additional checks, as necessary.

Elements RTL

Projects using Elements RTL will, by default, continue to reference a special Cocoa-based version of the library, where most types are mapped against
their Cocoa counterparts (e.g. List<T> continues to map toNSArray, instead of the Island-native List<T>.

This ensures best interoperability of Elements RTL types with system APIs for Cocoa projects.

See Also

e Island Platform
e Object Models on Island

o Default Object Model Compiler Option

1. Swift runtime object model support will be added once Apple Swift has stabilizedboth its ABI and its Module format. In theory, this features has
been delivered by Apple in late 2019, but it is not very well documented and we have doubts about its long-term stability. We are slowly
investigating and adding support for it, over time.

Further Reading

The Further Reading section collects topics on various concepts and technologies that are relevant to th&€€Cocoa platform, but beyond the scope of
being covered exhaustively on this documentation site, because they are not specific enough to Elements.

The topics are provided because other pages on this site refer to them, and generally, the topics will provide a short summary or overview of the
concept or technology, and then provide pointers to external places that explore the matter in more detail.

Topics are listed in alphabetical order.

Auto Layout
Auto-Release Pools
Bridging

Simulator, The
Retain Cycles
Selectors

Xcode

Also on This Site

e o o o o o o

Platform-Relevant Topics Elsewhere on this site:

o Automatic Reference Counting (ARC) and ARC vs GC

Auto Layout

Auto Layout is a system employed by the user interface system in Cocoa and Cocoa Touch since iOS 7.0 and OS X 10.9 Mavericks, which allows user
interfaces to be designed (be it in the visual designer in Xcode in Xib and Storyboard files or via code) in a way that can automatically adjust to various

screen sizes, windows sizes or device orientations.

Auto Layout is based on *Constraints that specify aspects such as minimum (or exact) spacing between controls, relative alignment within containers
and so forth.

Since iOS 8.0, Auto Layout works in combination withSize Classes to also allow the Ul to adjust more radically between iPhone and iPad, or between
portrait and landscape orientation.

Auto-Layout is available since Xcode 5; it can be enabled for older Xib or Storyboard files (or disabled for newer ones, if you do not want to use it) on
the first tab of the Utility pane in Xcode, on a per-file basis. The same is true for size classes, in iOS projects starting with Xcode 6. The exact feature
set available to Auto Layout may also depend on the version of Xcode selected in this panel - we recommend selecting "Default".

Read More

Read more about Auto Layout and Size Classes at these external links:

o Auto Layout Guide for iOS by Apple
o Auto Layout Guide for Mac by Apple
e The Autolayout Guide ebook
e Achieving Zen With Auto Layout

Auto-Release Pools

Auto-Release Pools are a concept that is (mostly) used behind the scenes byAutomatic Reference Counting to determine when objects can be
released. Auto-release pools are created by the Cocoa runtime and live on the current execution stack. When object references are autoreleased
(instead of fully released), rather than decrementing the object's reference count, the object is placed in the currently active auto-release pool. When
the Auto-release pool later gets released (usually higher up in the call stack), the object references in the pool will be released at that time.

In most cases, you will not need to create auto-release pools manually, and the system will create them for you as needed. For example, in code
written to react to a Ul event, you can assume that Cocoa created an auto-release pool before calling your handler, and that objects you allocate
within the handler that end up being auto-released will be released after your handler returns.

However, sometimes it is necessary to manually create an auto-release pool in code - for example when doing memory allocations in a long-running
loop. All Elements languages provide a syntax for this, with Oxygene and C# reusing the using keyword syntax:

using autoreleasepool do begin
// do work here

end;
// the auto-release pool will be cleared here

using (__autoreleasepool)
// do work here

}

1/ the auto-release pool will be cleared here

autoreleasepool {
// do work here

}
// the auto-release pool will be cleared here

See Also

o Automatic Reference Counting (ARC) and ARC vs GC
e using statements (Oxygene)

Read More

Read more about Auto-Release Pools at these external links:

¢ Advanced Memory Management Programming Guide for iOS
e Advanced Memory Management Programming Guide for Mac

Bridging

Bridging is a technology on the Cocoa platform that allows you to cast low-level Core Foundation entities such asCFStringRef or CFArrayRef to higher-level
Foundation objects such as NSString or NSArray. Bridging works toll-free, that is without runtime overhead.

The Elements compiler provides thebridge<T> System Function express bridging functionality, available in all languages.
See Also

e bridge<T> System Function

Read More

Read more about Bridging at these external links:

e Cocoa/CoreFoundation Bridging Explained by marc hoffman on RemObjects Blogs

Retain Cycles

Retain Cycles are an aspect (and possibly the one major downside compared toGC) of Automatic Reference Counting. Thyey happen when two (more
more) objects strongly reference each other in a circular fashion, causing an infinite loop and keeping each other from being released, even though
nothing else may be referencing the interlinked objects externally anymore.

A common example is that of two classes in a parent/child relationship. If both the parent (for example a collection) references its children, and the
child objects each reference the parent, the reference count for neither will ever go to zero, even when all outside references to the parent and

children have been released.

The Elements compiler, just as Objective-C and Apple's Swift implementation, introducesStorage Modifiers to allow your code to deal with and avoid
retain cycles. In the above example it would be common practice to mark the reference from the child class back to its parent with the weak (Oxygene
and Swift) or _weak (C#) keyword.

The Profiling with Instruments article gives a more elaborate example for this.

See Also

e Profiling with Instruments

Selectors

Selectors are a unique type for the Cocoa platform, and are used to represent a method name for the purposes of passing it on to APIs and have the
method with the given name called back at a later time.

They are represented by theSEL type, and the Cocoa base libraries provide functions for converting a string tosEL and back, with the
NSSelectorFromString and NSStringFromSelector APIs available in Foundation.

The Elements languages also provide a syntax for declaring selector literals, using theselector (Oxygene) or _ selector (C#) keywords, and a string-like
syntax in Swift:

var s: SEL := selector(buttonClicked:);
someObject.performSelector(s);

SEL s = __selector(buttonClicked:);
someObject.performSelector(s)

let s: SEL = "buttonClicked:";
someObject.performSelector(s)

Note that selector literals (and NSSelectorFromString) expect the selector in Objective-C Runtime naming convention, with colons in place of each
parameter.

In Swift, the selector literal syntax is indistinguishable from a regular string literal. Context of the literal (such as the type of the variable or parameter
it is being assigned to) is used to distinguish between strings and selectors.

Using the selector literal syntax will cause the compiler to perform checks if the specified selector is valid and known, and a warning will be emitted if

a selector name is provided that does not match any method known to the compiler. This provides extra safety over using the NSSelectorFromString
function.

See Also

e selector() in Oxygene
* _selector() in C#

Read More
Read more about Selectors at these external links:

o Cocoa Core Competencies: Selectors

Xcode

Xcode is Apple's own IDE for creating Mac and iOS apps using Objective-C and Apple's own implementation of the Swift language.
As Elements developer, you interact with Xcode for two things:

e While building your cocoa projects, the Elements compiler will leverage some of the command line tools provided by Apple as part of Xcode,
under the hood.
¢ When working with XIB and Storyboard Files, you will use the visual designers inside Xcode, also sometimes referred to as "Interface Builder".

Working with Multiple Versions of Xcode

As an experienced Mac or iOS developer, and in particular at times when there is an ongoing beta for the next release of OS X or iOS, you may find
that you want to work with multiple versions of Xcode on the same Mac. For example, you might want to use the shipping version of Xcode for your
production app work, and switch to the latest beta of Xcode when playing around with the latest OS.

Xcode provides a built-in mechanism for that by having the concept of an "active" version. You can simply keep multiple copies of Xcode.app on your
Mac (either in different folders or by naming them something like Xcode-45.app with an appended version number) and switch which version of Xcode
is "selected" and will be seen by CrossBox in two ways:

* Inside Xcode itself, you can go to the "Preference" window, and in the 'Locations" tab you can choose between all the different versions of
Xcode found on your system to decide which one is "active" (this is regardless of which version of Xcode you are actually in to change this):

o Alternatively, you can run sudo xcode-select --switch "/path/to/Xcode.app" in Terminal to switch the selected version of Xcode (where you'd replace
/path/to/Xcode.app with the actual path to the version of Xcode you want to use).

You can also use xcode-select --print-path in Terminal to find out what version of Xcode is currently selected. CrossBox uses this command line internally,
so you can be assured that whatever the output is, it is what CrossBox will see as well.

See Also

o Setting up Xcode for Cocoa Development with Fire
e Setting up Xcode for Cocoa Development with ,atee
e Setting up Xcode for Cocoa Development with Visual Studio

Read More

Read more about Xcode at these external links:

e Xcode on developer.apple.com
¢ Download Xcode from the Mac App Store

Android

Elements supports creating applications for the Android mobile platform, both using the Android SDK and the Android NDK.

The bulk of most applications will be build against theJava-based Android SDK, which provides a wide range of high level APIs for
building GUI applications and accessing system services. Android SDK based applications compile directly to Java Byte Code, and
from there are further processed using Android's DEX or D8 processors to a special byte code format used by the Android runtime.

In addition, Elements allows you to build extensions using the nativeAndroid NDK (Native Development Kit). NDK executables are
extensions compiled to CPU-native code for ARM, and interact with more low-level C-based APIs of the Android and its underlying
Linux operating system. NDK extensions can be loaded into an Android SDK-based application, and the two parts can interact via NI, as needed.

Of course the main use for Android NDK code is tomix with an Java-based Android SDK app, and Elements makes this really easy.

Of course Android projects can use any of the six Elements languages,Oxygene, C#, Swift, Java, Go and Mercury.
Tutorials

e Creating your first Android SDK Appin Fire or Water
o Creating your first Android SDK Appin Visual Studio
e Creating an Android NDK Extension

Videos

e Android Mixed-Mode Apps
e Sharing Code for iOS and Android

See Also

e Java Platform
e Android SDK
e Android NDK
e NI

Compiler Back-ends

o Cooper — for Java-based Android SDK
o Island/Android — for Android NDK

Android SDK

The Android Software Development Kit is the SDK for writing Android applications.

Android depends on the DK to compile Android applications, but once the application gets installed on Android, the Android Runtime or Dalvik
(depending on the Android version) runs the application.

Android's class library (both the core Java classes and Android-specific APIs) is contained inandroid.jar and has lots of types spread over several
namespaces (or "packages", in Java lingo).

See Also

Get set up for Android Development in Fireon Mac

Get set up for Android Development in Wateron Windows

Get set up for Android Development in Visual Studioon Windows
Android Developer Portal

Android APIs Official Docs by Google

ava Platform and the]DK

See Also

o Android NDK with the Island Platform
e Creating an Android NDK Extension Tutorial

Android NDK

The Android Native Development Kit (NDK) is a toolset that lets you implement parts of your app in native code, using lower-level "C style" APIs
and with direct access to memory and the Linux platform that underlies the Android OS.

Android NDK extensions can be created using all Elements languages; they compile to CPU-native ARM or Intel code, and can be embedded in and
interacted with from your Android SDK based main application.

See Also

e Get set up for Android Development in Fireon Mac

e Get set up for Android Development in Wateron Windows

o Get set up for Android Development in Visual Studioon Windows
e Android Developer Portal

e Android NDK Homepage

See Also

e Android SDK based on theJava Platform
e Creating an Android NDK Extension Tutorial
¢ Mixing SDK and NDK

Mixing SDK and NDK

Android app development is split into two, very distinct worlds.

On the one side, there's the Android SDK, which is what the bulk of Android apps is being developed in. The SDK is based on th¢ava Runtime and the
standard Java APIs, and it provides a very high-level development experience. Traditionally, the Java language or Kotlin would be used to develop in
this space.

And then there's the Android NDK, which sits at a much lower level and allows to write code directly for the native CPUs (e.g. ARM or x86). This code
works against lower-level APIs provided by Android and the underlying Linux operating system that Android is based on, and traditionally one would
use a low-level language such as C to write code at this level.

The Java Native Interface, or JNI, allows the two worlds to interact, making it possible for SDK-level JVM code to call NDK-level native functions, and vice
versa.

Elements makes it really easy to develop apps that mix SDK and NDK, in several ways:

. A shared language for SDK and NDK

. Easy bundling, with Project References
. Automatic generation of JNI imports

. Mixed Mode Debugging

A Shared Language for SDK and NDK

HWN B

The first part is the most obvious and trivial. Since Elements decouples language form platform, whatever the language of choice is, you can use it to
develop both the JVM-based SDK portion of your app and the native NDK part. No need to fall back to a low-level language like C for the native
extension.

Easy Bundling of NDK Extensions, with Project References

Once you have an SDK-based app and one or more native extensions in your project, you can bundle the extension(s) into your fina .apk simply adding
a conventional Project Reference to them, for example by dragging the extension project onto the app project irFire or Water.

Even though the two projects are of a completely different type, theEBuild build chain takes care of establishing the appropriate relationship and
adding the final NDK binaries into the "JNI" subfolder of your final .apk.

Automatic Generation of JNI Imports

Establishing a project reference to your NDK extension also automatically generates|NI imports for any APIs you expose from our native project. All
you need to do is mark your native methods with the |NIExport aspect, as such:

[JNIExport(ClassName := '‘com.example.myandroidapp.MainActivity')]
method HelloFromNDK(env: ~JNIEnv; this: jobject): jstring;
begin
result := env”™ "~ .NewStringUTF(env, 'Hello from NDK!');
end;

[JNIExport(ClassName = "com.example.myandroidapp.MainActivity")]
public jstring HelloFromNDK(~JNIEnv env, jobject thiz)
{

return (**env).NewStringUTF(env, "Hello from NDK!");

}

@JNIExport(ClassName = "com.example.myandroidapp.MainActivity")

public func HelloFromNDK(_ env: ~JNIEnv, _ this: jobject) -> jstring {
return (**env).NewStringUTF(env, "Hello from NDK!");

}

@JNIExport(ClassName = "com.example.myandroidapp.MainActivity")
public jstring HelloFromNDK(~JNIEnv env, jobject thiz) {

return (**env).NewStringUTF(env, "Hello from NDK!");
}

As part of the build, the compiler will generate a source file with import stubs for any such APIs, and inject that into your main Android SDK project.
That source file will contain Partial Classes (or Extensions, in Swift parlance) matching the namespace and class name you specified.

All you need to do (in Oxygene, C# or Java) is to mark your own implementation of the Activity agartial (_ partial in Java, and no action is needed in
Swift), and the new methods implemented in your NDK extension will automatically be available to your code:

namespace com.example.myandroidapp;

type
MainActivity = public partial class(Activity)
public
method onCreate(savedInstanceState: Bundle); override;
begin
inherited;

// Set our view from the "main" layout resource
ContentView := R.layout.main;
HelloFromNDK;

end;

end;

end;

namespace com.example.myandroidapp

public partial class MainActivity : Activity
{
public override void onCreate(Bundle savedinstanceState)

base(savedlinstanceState);
// Set our view from the "main" layout resource
ContentView = R.layout.main;
HelloFromNDK();
}
}
}

public class MainActivity : Activity {
override func onCreate(_ savedInstanceState: Bundle) {
super(savedinstanceState)
// Set our view from the "main" layout resource
ContentView = R.layout.main
HelloFromNDK()
}
}

package com.example.myandroidapp;

public partial class MainActivity : Activity {
public override void onCreate(Bundle savedinstanceState) {
base(savedInstanceState);
// Set our view from the "main" layout resource
ContentView = R.layout.main;
HelloFromNDK();
}
}

Of course you can use any arbitrary class name in the|NIExport aspect, it does not have to match an existing type in your SDK project. If you do that,
rather than becoming available as part of your Activity (or whatever other class), the imported APIs will be on a separate class you can just instantiate.

To see the generated imports, search your build log for)Nl.pas" to get the full path to the file that gets generated and injected into your project. You
can also just invoke "Go to Definition" (~~D in Fire, Ctrl+Alt+D in Water) on a call to one of the methods, to open the file, as the IDE will treat it as
regular part of your project. (The same, by the way, is also true of the R.java file generated by the build that define ther class that gives access to all
your resources.)

Mixed Mode Debugging

Finally, Elements allows to debug both your SDK app and its embedded NDK extensions at the same time. You can set breakpoints in both Java and
native code, and explore both sides of your app and how they interact.

All of this is controlled by two settings, but Fire and Water, our IDEs, automate the process for you so you don't even have to worry about them
yourself.

First, there's the "Support Native Debugging" option in your NDK project. It's enabled by default for the Debug configuration in new projects, and it
instructs the build chain to deploy the LLDB debugger library as part of your native library (and have it, in turn, bundled into your .apk). This is what
allows the debugger to attach to the NDK portion of your app later.

Secondly, there's the "Debug Engine" option in your SDK project. It defaults to "Java", for JVM-only debugging, but as soon as you add a Project
Reference to an NDK extension to your app, it will switch to "Both" (again, only for the Debug configuration), instructing the Elements Debugger to
start both JVM and native debug sessions when you launch your app.

This, of course, works both in the Emulator and on the device.

See Also

Android SDK and Android NDK

Debugging Android Projects

NIExport Aspect

ava Native Interface

Video: Mixed Mode Android Apps

Blog post: Debugging Mixed-Mode Android Apps

Note that the video and blog post above were created before the automatic generation of JNI Imports was available, so it still mentions having to
define the import manually.

.
3
3
3
.
3

Debugging
Elements comes with a complete debugging solution for Android projects, whether build using the Java basedSDK or the native NDK.

Debugging Android SDK Apps

Android ASK based applications can be debugged right from the Fire, Water or Visual Studio IDE, either on an attached Android device, or on an
Emulator.

With an Android project active, theCrossBox dropdown menu in the toolbar shows you a list of all known devices and emulators. Simply select the
right item and choose "Run" (Fire/Water, $8R or Ctrl+R, respectively) or "Start" (Visual Studio, F5), and the IDE will build, deploy and then launch
your app in the debugger.

If the selected device is an emulator that is not started yet, the IDE will automatically boot it for you.

Note: When you connect an Android device for the first time, you will need to approve it for USB debugging on the device. After approving, it might
take a few seconds for the device to appear in the CrossBox menu.

Under the hood, the CrossBox menu uses the standard Android command line tools to determine available devices and emulators. If a device does not
show in the menu, try running the Android SDK adb devices tool from the command line. Elements can only detect devices shown by this command; if
your device does not show in adb devices, you have a more general connectivity or setup problem.

To create and configure Emulators, you can use the Virtual Device Manager, in Android Studio. Please refer to theAndroid Studio Documentation for
details.

Also Note: Android Studio can sometimes interfere with debugging from other IDEs. If you have problems launching your Android app in the
debugger, make sure Android Studio is shut down and try again.

Debugging Android NDK Extensions

Android NDK Extensions cannot run on their own, and as such, an NDK project cannot be directly launched in the debugger. However, NDK Extensions
can be debugged in the context of the SDK-based android app that contains them. The easiest way to do this is to have both projects in the same
solution, and use a Project Reference to add the NDK Extension to the app, as described in theMixing SDK and NDK topic.

There are two settings to be set for mixed debugging to work:

First, there's the "Support Native Debugging" option in the NDK project. It's enabled by default for the Debug configuration in new projects, and it
instructs the build chain to deploy the LLDB debugger library as part of your native library (and have it, in turn, bundled into your .apk). This is what
allows the debugger to attach to the NDK portion of your app later.

Secondly, there's the "Debug Engine" option in the SDK project. It defaults to Java", for JVM-only debugging, but as soon as a Project Reference to
an NDK extension is added Fire or Water will automatically switch it to '‘Both" (again, only for the Debug configuration), instructing the Elements
Debugger to start both JVM and native debug sessions when you launch your app.

With these set, you can debug your Android SDK application as described in the section above. You can set breakpoints or react to exceptions from
both native and Java-based code.

Android Debug Hosts

Sometimes you need to debug code in the context of an Android app not created with Elements. The most common case would be an Android NDK
Extension that you use in an app created with Android Studio.

By adding three settings to your project, you can enable theFire and Water Debuggerto launch an application of your choice in Mixed-Mode db
debugging (i.e. with the ability to debug both Java and NDK code). This allows you to debug all parts of the launched application (whether created with
Elements or not) that you have debug symbols for, but most importantly, it will allow you to debug any Java or NDK code from your current project
that is running in the context of the application.

To enable this three settings (one optional) need to be provided:

* DebugHostAPK: Optional, this setting can point to the full path of a ready-to-deploy.apk package file. If set, the debugger will install this package
on your Android device or emulator as part of the debug session (instead of your current project's output). If the application you want to debug is
already deployed, you can leave this empty.

o DebugHostPackageName: The name of the application to launch. This is the reverse-domain notation name (a.k.a. Package ID).

e DebugHostActivity: The full name of the activity to launch.

For Example:

<DebugHostAPK>/path/to/org.me.myapplication.apk</DebugHostAPK>
<DebugHostPackageName>org.me.myapplication</DebugHostPackageName>
<DebugHostActivity>org.me.myapplication.MainActivity </DebugHostActivity >

Note: It is up to you how the code you want to debug gets into the.apk file you are debugging; please refer to the documentation for the development
tool you are using to create the .apk on how to embed second-party Java or NDK code.

When embedding NDK Extensions created with Elements for debugging, make sure that the "Support Native Debugging" option is turned on, and that
you embed the libgdbserver.so debugger binary that is emitted as part of the NDK's output alongside the mainso file generated from your project.

See Also

Debugging with Fire and Water

Debugging with Visual Studio

Video: Android Mixed-Mode Apps

Blog: Debugging Mixed-Mode Android Apps

Mixing SDK and NDK

Create and Manage Virtual Devices in the Android Studio Documentation

Build Phases

In addition to the core compile phase that takes your source code and generates a binary executable, the projects for theAndroid platform go through
a variety of additional build phases for reaching the final deployable app (which is usually an .apk or an App Bundle). In particular, this includes
processing of resources and converting Java byte code emitted by the compiler to Android native "Dalvik" or ART format, in a process called Dexing.

Build Phases for Android SDK Apps

e Resource Processing using aapt or aapt2
e Dexing using dex oir d8

e o o o o o

See Also

e Android SDK
¢ Android NDK

Dexing

Dexing is the process of converting standard Java JVM byte code (in the form of ajar archive file created by the compiler) into Android's native format,
Dalvik or ART.

This is done by a tool called dex or its more modern replacementds, which is part of the standard Android build tools.EBuild will take care of running
this tool for you as part of the regular build process, but it can still be important to know what is going on, for more complex use cases.

By default, EBuild will use the newerds tool, when available, falling back todex on older versions of the Android SDK that do not supportds.

Dexing

Pre-Dexing

The dexing process can take some time, and pre-dexing eliminates overhead by dexing referenced libraries ahead of the compile phase, and caching

the pre-dexed copies so that they do not have to be processed again for each compile, when they likely have not changed.

Pre-Dexing can be enabled by setting theAndroidDexMode setting to PreDex (the default).

Incremental Dexing

Multi-Dexing

Android has a limit on the size for each individual.dex file generated by the dexing process. To allow for larger projects, a technology called "multi-
dex" is used, which will spread out the compiled types across multiple .dex files. When using d8, multi-dexing will happen by default, but for the legacy
dex tool, multi-dexing can be enabled or disabled manually with a project setting calledAndroidPackMultidex, which defaults toFalse.

For older Android platforms (lower than SDK version 21) some additional concerns might arise when multi-dexing. Devices on 21 or later use the
newer Android Runtime (ART) instead of Dalvik, which according to the docs compiles all apps into a single executable using the on-device dex2oat
tool. This utility accepts .dex files as input and generates a compiled app executable for the target device.

On ART it doesn't matter which .dex file individual classes end up in, since all.dex files are compiled into a single .oat file at install time, and ART
executes this .oat file when launching the app.

For multidexed apps targeting a Deployment SDK of 20 or lower, you will need tofollow the Android docson supporting MultiDex and add a text file
with the classname of your custom Application class to the project, as described here. You need to set theAndroidMainDexListFile project setting to point
to this file.

Note: EBuild's AndroidMainDexListFile is the exact equivalent of Gradle's multiDexKeepFile. They both pass the same parameter to the same Android build
tool and nothing more.

Further Reading

The Further Reading section collects topics on various concepts and technologies that are relevant to théAndroid platform, but beyond the scope of
being covered exhaustively on this documentation site, because they are not specific enough to Elements.

The topics are provided because other pages on this site refer to them, and generally, the topics will provide a short summary or overview of the
concept or technology, and then provide pointers to external places that explore the matter in more detail.

Topics are listed in alphabetical order.

e Java Native Interface (JNI)
Also on This Site

Platform-Relevant Topics Elsewhere on this site:

o Garbage Collection (GC) and ARC vs GC

Android Layout Files

The Android platform uses XML layout files to define the user interface.

Elements uses these standard files in the same way they are used when working with the Java Language, so Elements developers have access to the
same controls and Ul capabilities as all other Android developers, fully natively.

You can edit these XML files directly using the regular code editor, or you can ask Fire or Visual Studio to launch Android Studio to design these files
using Google's official visual designer, by right-clicking the project node in the Solution tree and choosing "Edit User Interface Files in Android Studio"
(Fire) or "Open in Android Studio" (Visual Studio).

Read More

o Layouts Official Docs
o Editing Android XML Files in Android Studio (Fire)
e Editing Android XML Files in Android Studio (Visual Studio)

Version Notes

« Integration with Android Studio for visual design of Android Layout files is new inVersion 8.1.

Android XML Files

The Android platform uses XML files in projects for many purposes, from providing basic configuration of the application in theManifest File, to using
XML Layout Files to define the user interface.

Elements uses these standard files in the same way they are used when working with the Java language, so Elements developers have access to the
same controls and Ul capabilities as all other Android developers, fully natively.

There are two ways for working with XML Layout files in your Android projects:

e You can edit the files in XML format using the regular code editor in Fire and Visual Studio. This option is favored by many Android developers,
and gives you full control about your Ul design down to the most minute detail.

e You can ask Fire or Visual Studio to launch Android Studio to design these files using Google's official visual designer, by right-clicking the project
node in the Solution tree and choosing "Edit User Interface Files in Android Studio" (Fire) or "Open in Android Studio" (Visual Studio).

Any changes you make to your XML Layouts in Android Studio will automatically sync back into your project, and elements defined in your layouts and
the other XML files will be available via the static R class in your project's defaultnamespace.

Read More

e Editing Android XML Files in Android Studio (Fire)
o Editing Android XML Files in Android Studio (Visual Studio)

Version Notes

e Integration with Android Studio for visual design of Android Layout files is new inVersion 8.1.

Device-Specific Setup

Depending on the Android Devices you want to develop for, some device-specific parts of the Android SDK might need to be installed or configured.
This page collects links to setup and development instructions for popular Android devices.

Amazon FireTV

e Getting Started Developing Apps and Games for Amazon Fire TV
e Setu

Java

Elements for Java, also referred to as "Cooper", is the flavor of Oxygene, RemObjects C#, Silver and lodine that allows you to build
applications and projects for the Java Runtime Environment and all its variations, including the Java-based Android SDK.

While not as language-independent as the .NET CLR, the Java Runtime Environment (JRE) is distinctly separate from the Java
programming language and - just as on .NET - a variety of languages that are not the Java language are available to compile for the
JRE. The six Elements languages are among those.

The Elements compiler takes full advantage of the JRE, and creates applications and libraries that are 100% pure Java - allowing
your code full access to all the Java (and Android) framework classes, and any third party and open source Java libraries that are available, all fully
native within the platform.

Platforms

While Android certainly is the most exiting and most-in-demand Java-based platform today, the Elements languages allow you to create applications
for any place that Java code can run, from Swing GUI apps to JavaServer Pages, Applets, to projects that run on embedded devices or on other Java-
based phone platforms.

See Also

e Android SDK with the Island Platform
e Android NDK with the Island Platform

Compiler Back-ends

e Cooper

Java Development Kit (JDK)

The Java Development Kit is the SDK that provides the tools needed to build apps that can be run on th¢ava Runtime Environment (JRE). The JDK
includes extra tools on top of the JRE to develop applications, while the the JRE is needed to run applications.

Java's class library is contained inrt.jar (or classes.jar for older Java versions on OS X) and has lots of types spread over several "packages", which in

Elements are called namespaces. Java has its base classes (Object, String and the object wrappers for the basic types) injava.lang. Other interesting
classes list lists and maps are in the java.util namespace.

See Also

e Get set up for Java Development in Fireon Mac

e Get set up for Java Development in Wateron Windows

o Get set up for Java Development in Visual Studioon Windows
o Official JDK documentation provided by Oracle

Java specific notes

Generics

Generics on the Java platform are implemented by doing type errasure, meaning the generics don't exist anymore at runtime and the type parameters
are lowered to their underlying types (usually Object).

Copy Local

When using libraries on Java that are not part of the SDK, the "Copy Local" flag on the references has to be set (default) to make sure they're properly
referenced from the main jar file. If this flag isn't set, the JRE won't "find" the libraries unless an explicit class path is provided when calling the Java
runtime.

Unsigned Types

Java itself does not support unsigned integer types. The compiler emulates this (fairly efficiently, too), however this needs a reference to Cooper.jar to
work. When referenced, the "Byte", "UInt16", "UInt32" and "UInt64" types become available (with the default aliases like Cardinal and Word). At

runtime these types are the exact same types as their signed counterparts, so overloading by signed vs unsigned is not supported. When boxing these
types they'll box in the UnsignedByte, UnsignedShort, Unsignedinteger or UnsignedLong type, defined in Cooper.jar.

Throws

Java has the concept of checked exceptions. Elements ignores these annotations, however, it can emit them by having aRaises node or Throws
aspect.

Arrays

Java only supports regular (starting with 0, single index) arrays. Multi dimensional arrays are not supported by the JVM. Elements provides a set of
special operators to convert array of T to iterable for all supported types, these are used to allow the LINQ query operators on Java arrays.

Dynamic
Dynamic support in Java is implemented in Cooper.jar through reflection calls, it mimicks the features of the Echoes implementation.
For/For in expressions

This feature needs a reference to Cooper.jar to work.

Deployment

This section collects information about deploying applications created with the Java edition of Elements, in various scenarios.

Further Reading

The Further Reading section collects topics on various concepts and technologies that are relevant to thdava platform, but beyond the scope of
being covered exhaustively on this documentation site, because they are not specific enough to Elements.

The topics are provided because other pages on this site refer to them, and generally, the topics will provide a short summary or overview of the
concept or technology, and then provide pointers to external places that explore the matter in more detail.

Topics are listed in alphabetical order.

o Java Native Interface (JNI)
Also on This Site

Platform-Relevant Topics Elsewhere on this site:

e Garbage Collection (GC) and ARC vs GC

Java Native Interface

Java Native Interface (JNI) is a technology part of the Java runtime that allows Java code to interact with platform-native libraries such as those written
in C.

Elements supports JNI via the external (Oxygene), extern (C#), _external (Swift) or native (Java language) keywords.

JNI can be used both on classic Java VM apps, and also onAndroid to communicate between SDK- and NDK-based code.

See Also

Mixing Android NDK and SDK
Android NDK

NIExport Aspect

external Method Modifier (Oxygene)

ava Native Interface (INI) Documentation at Oracle
ava Native Interface (JNI) Tutorial

P/Invoke (.NET)

WebAssembly

The "WebAssembly" sub-platform of thelsland target lets you build libraries and modules that can run in modern web browsers and
interact with JavaScript.

e o o o o o o

Available APIs:

o Core browser and JavaScript APIs DOM, etc)
e Island RTL

e Elements RTL

L]

L]

Delphi RTL
Swift Base Library (mainly for use with Swift)

Of course any other custom, third party or open source C APIs can be imported usingeXGen.

Common Projects

WebAssembly supports two common project goals:

e Web Modules allow you build code that runs in the web browser, typically as part of a website or web application. The code can interact with the
Browser object, the Document Object Model (DOM) and the HTML and JavaScript code that runs as part of the web page.

¢ Node.js Modules, instead, can be run in the Node.js runtime, usually as part of a larger Node.js server-side application. They can interact with

Node.js and other JavaScript that is part of the server application.

In addition to these two "application" project types, you can of course also createStatic Library projects. As on the other platforms, static libraries
compile to a binary file that can then be used from other (Browser or Node.js) application projects, to share and re-use code.

Additional Topics

e Interop between WebAssembly & JavaScript

e Working with the Browser APIs & the Document Object Model (DOM)
o Debugging WebAssembly Projects

e Deploying and Shipping WebAssembly Projects

Development, Deployment and Debugging

Development of Island apps for WebAssembly is supported in Visual Studio, Fire and Water. The Google Chrome browser needs to be installed to
debug WebAssembly Web Modules in a website context, and Node.js is required to debug Node.js modules.

Read moere about debugging and deploying here.

Compiler Back-ends

e |sland/WebAssembly

Interop

Of course one important cornerstone of WebAssembly development is inter-operating with JavaScript based APIs.

Elements provides strongly-typed support for working with theBrowser APIs and the Document Object Model(DOM) via the Browser class, but
oftentimes you will also want to interact with your own JavaScript code, hosted in a separate .js files or in your core .html.

This inter-op works both ways:

Accessing WebAssembly Types from JavaScript

Accessing your Elements classes from JavaScript is easy.
On the WebAssembly side, simply make sure your class is marked with theExport Aspect.

type
[Export]
Program = public class
public
method HelloWorld();

[Export]
public class Program

public void HelloWorld()

@Export
public class Program {
public void HellowWorld()

@Export
public class Program

{
public void HelloWorld()

<Export>
Public Class Program

Public Sub HelloWorld

In JavaScript, you can then instantiate an instance of the class simply by calling a method matching its name, on thenodule, using its name followed by
parenthesis. You then can call any public member on it.

You can see this in action with the Program class in the default template:

var program = module.Program();
program.HelloWorld();

If your constructor or your method take parameters, you can of course pass these within the parenthesis. Make sure to only use parameter or return
types that are compatible with JavaScript.

Calling JavaScript Functions from WebAssembly

The easiest way to access JavaScript from your Elements code is to use thewebAssembly.Eval method. This method takes a string that can be any
arbitrary JavaScript code, but for the purpose of making inter-op calls, it can be a function call to a function inside your JavaScript.

Essentially it works the same as theeval function provided by JavaScript itself.
var x := WebAssembly.Eval('DoSomething(10)');

var x = WebAssembly.Eval("DoSomething(10)");

let x = WebAssembly.Eval("DoSomething(10)")

var x = WebAssembly.Eval("DoSomething(10);");

var x = WebAssembly.Eval("DoSomething(10)");

Dim x = WebAssembly.Eval("DoSomething(10)")

This single line of Elements code could call a function that is declared, for example, like this:

function DoSomething(someParam)

{

return 5;

}
Declaring Strongly-Typed Method Stubs

The languages extern/external/native/Declare syntax can be used to declare strongly typed global function stubs that can be called, letting the compiler
generate the necessary calls to WebAssembly.Eval() under the hood:

method DoSomething(someParam: Integer): Integer; external;
public extern int DoSomething(int someParam);

public __external func int DoSomething(int someParam);
public native int DoSomething(int someParam);

Declare Function DoSomething(someParam As Int) As Int

The DoSomething method can now be called directly anywhere from Elements WebAssembly code, with strongly-typed parameters and result. Under the
hood, the compiler will emit the proper call back to JavaScript.

Calling JavaScript Object APIs from WebAssembly

You can also obtain references to JavaScript object instances from your Elements code. For example, arkval call as shown above might return such an
object, as do many of the existing Browser, Node)S and DOM APIs exposed by Island RTL.

By default, such objects are typed asDynamic, which means that - just as in JavaScript itself - the compiler has no intrinsic knowledge of what methods
or properties might be available on the object. The compiler will let you make calls to any arbitrary member, and the calls will be dispatched
dynamically at runtime - failing at runtime if they cannot be completed (again, just as they would in JavaScript itself).

var x := Eval('GimmeSomeObject()');
X.LetsMakeACall();

var x = Eval("GimmeSomeObject()");
x.LetsMakeACall();

let x = Eval("GimmeSomeObject()")
x.LetsMakeACall()

var x = Eval("GimmeSomeObject();");
x.LetsMakeACall();

var x = Eval("GimmeSomeObject()")
x.LetsMakeACall()

dim x = Eval("GimmeSomeObject()")
x.LetsMakeACall()

This code obtains a Javascript object by calling the GimmeSomeObject function defined in JavaScript. The variablex will be typed asDynamic, letting us
call any method we want.

Creating Strongly-Typed Interfaces

If you know the exact APl of a JavaScript object, you can create a strongly typed interface that describes the available members, on the Elements side.
You do this by adding the Dynamicinterface(GetType(EcmaScriptObject)) Aspect to the interface:

type
[Dynamicinterface(GetType(EcmaScriptObject))
ISomeObject = public interface
method LetsMakeACall;
end;

[Dynamiclnterface(GetType(EcmaScriptObject))
public interface ISomeObject

void LetsMakeACall();
}

@DynamicInterface(GetType(EcmaScriptObject)
public interface ISomeObject {

void LetsMakeACall()
}

@Dynamicinterface(GetType(EcmaScriptObject)
public interface ISomeObject

void LetsMakeACall();
}

<Dynamicinterface(GetType(EcmaScriptObject)>
Public Interface ISomeObject

Sub LetsMakeACall()
End Interface

Once implemented, simply cast yourDynamic object reference to an the interface, and you can now make strongly-typed calls to the object that will be
checked by the compiler (and you will get code completion, as well):

var x := Eval('GimmeSomeObject()') as ISomeObject;
Xx.LetsMakeACall();

var x = (ISomeObject)Eval("GimmeSomeObject()");
x.LetsMakeACall();

let x = Eval("GimmeSomeObject()") as! ISomeObject
x.LetsMakeACall()

var x = Eval("GimmeSomeObject();") as ISomeObject;
x.LetsMakeACall();

dim x = CType(Eval("GimmeSomeObject()"), ISomeObject)
x.LetsMakeACall()

Now, x is strongly-typed to be alSomeObject, and the compiler will enforce that you only call known members. And you will get code completion, as well
- for example CC after x. would show you LetsMakeACall as valid option.

Predefined Interfaces

Island RTL already contains pre-defined dynamic interfaces for dozens of common JavaScript objects used by the Browser'sDocument Object Mode;
(DOM). these are declared in the RemObjects.Elements.WebAssembly.DOM namespace.

See Also

Dynamicinterface Aspect
EcmaScriptObject Type
WebAssembly Class
Eval Function

Browser Class

RemObjects.Elements.WebAssembly.DOM namespace

Browser & DOM

Elements provides special support forinter-operating with the most important platform API for Web Modules: theBrowserobject, and the Document
Object Model (DOM) that it provides access to.

® o o o o o

The Browser

The static Browser class provided as part of Island RTL provides a few methods to access and create basic DOM objects:

o GetWindowObject gives access to the global "Window" instance
e GetElementByld and GetElementByName allow look-up of existing HTML elements by ID and by name.
e CreateElement and CreateTextNode create new DOM objects, for later insertion into the HTML.

Additional APIs are provided to perform Ajax and XmIHttp Requests NewXMLHttpRequest), create WebSockets (NewWebSocket), and more. Please refer to
the Browser Class reference of its source code onGitHub for a more complete overview of what is available.

Strong-Typing the DOM

By default, JavaScript objects present as opaque 'Dynamic types that - like in JavaScript itself - allowing arbitrary calls that cannot be checked for
validity until runtime.

Under the hood, these are instances of theEcmaScriptObject class provided by Island RTL, which encapsulates the dynamic nature of the object and
handles dispatching calls by name, at runtime.

But Island RTL provides strongly-typed interfaces that let the compiler know what APIs should be available on a given object. This

o lets the compiler enforce only valid calls are made, at compile time,
e give you warnings for case mismatches and let you use mismatched case in the case-insensitive languages Oxygene and Mercury),
e gives you code completion and other IDE help while writing your code.

There are three ways to obtain a strongly-typed reference to a JavaScript object:

1. Some APIs, such as Browser.GetWindowObject mentioned above, already return the proper well-known interface type, instead of dynamic, out of the
box.

2. Some APIs, such as GetElementByld that cannot know the exact type will return a base type, e.g Element. If known, these can be cast to the more
concrete type that is expected (e.g. Button).

3. Any JavaScript object, whether represented as Dynamic or a strongly-typed interface can simply be type-cast to a strongly-typed interface of your
choice, as needed (but see Caveats, below).

Once a variable is strongly typed, the compiler can enforce access to only the known members.

// Window is strongly typed:
var IWidth := Browser.Window.innerWidth;

// Element can simply be cast to a Form, if we know its type:
(Browser.GetElementByName('LoginForm') as HTMLFormElement).checkValidity();

// Window is strongly typed:
var IWidth = Browser.Window.innerWidth;

// Element can simply be cast to a Form, if we know its type:
(Browser.GetElementByName("LoginForm") as HTMLFormElement).checkValidity();

// Window is strongly typed:
let IWidth = Browser.Window.innerWidth

// Element can simply be cast to a Form, if we know its type:
(Browser.GetElementByName("LoginForm") as! HTMLFormElement).checkValidity()

// Window is strongly typed:
var IWidth = Browser.Window.innerWidth;

// Element can simply be cast to a Form, if we know its type:
(Browser.GetElementByName("LoginForm") as HTMLFormElement).checkValidity();

' Window is strongly typed:
Dim IWidth = Browser.Window.innerWidth;

' Element can simply be cast to a Form, if we know its type:
CType(Browser.GetElementByName("LoginForm"), HTMLFormElement).checkValidity()

Caveats

Keep in mind that the strongly-typed interfaces are merely fronts for the compiler to know what members areexpected to exist on the underlying
JavaScript object. In reality, your WebAssembly code is still interacting with a EcmaScriptObject instance that represents the JavaScript object and will
dispatch calls dynamically as needed, at runtime.

That means calls can still fail at runtime, for example if

e the JavaScript object for some reason does not implement the expected member,

e the dynamic interface declaration seen by the compiler was wrong,
e you cast a JavaScript object to the wrong interface.

See Also

Dynamic Dispatch

Browser Class
RemObjects.Elements.WebAssembly.DOM namespace
EcmaScriptObject Type

Code-Behind

To make it easy to interact with HTML elements in your web application from code, Elements offers a Code-behind model, similar toNET's XAML,
where the compiler generates a partial class with strongly typed members representing your HTML.

e o o o

This model is enabled by default in the 'Web Module w/ Code-Behind" template, or you can enable it manually by setting the build action of your
.html files to "Html" and manually adding a code file with a partial class to your project.

Any HTML element marked with anid attribute will get represented in the generated object model - where available with a the concrete DOM type,
otherwise as the HtmlElement base type.

The head and body elements, will always be exposed, if present. An optionalid attribute will override the name they are exposed under.
<input type="button" id="okBbutton">Click Me</button>

From your code in the partial class representing the HTML file, you can then access the button as a local property, call its methods, and react to its
events:

okButton.disabled := true;
okButton.disabled = true;
okButton.disabled = true
okButton.disabled = true;
okButton.disabled = true

okButton.disabled = True

Events

In addition to accessing, modifying and calling a DOM object's properties and methods, you can also subscribe to callback eventsjf the element was
marked with events="true" in the HTML.

Events use the standard events mechanism available in all Elements languages, and work similar to how events work on theNET platform.

Just like on .NET (and the other platforms, although less common there), you can assign anyBlock, including an instance method, anAnonymous
Method or, where available, a Lambda Expression.

okButton.onClick += (sender, ea) -> begin
end;
okButton.onClick += (sender, ea) => {

.

okButton.onClick += {sender, ea in

-

okButton.onClick += (sender, ea) -> {

)

okButton.onClick += func(sender, ea) {

}
AddHandler okButton.onClick, Sub (sender As HtmlElement, ea As Dynamic)

End Sub

For Mercury, the exposed HTML elements are adorned with thewithEvents feature, so that event handlers can optionally use theHandles syntax:
Sub OkClicked(sender, e) Handles okButton.onclick

End Sub

Once subscribed, your callback will be called whenever the Browser or DOM triggers the particular event.

Behind the Scenes

Behind the scenes this functionality is supported by a second code file that is generated as part of the build process, and injected to the compile. In
Fire and Water, you can access this file via the "Generated Source Files" folder shown for your project in the jump bar. You can also use "Go to
Defintion" on a local reference to one of your HTML elements to jump to irt, in all IDEs.

Since this file is generated by the build, it (and Code Completion for the members) is only available after the forst successful build of the project.

The generated file will be have the same name as your.html file, with an added .vb extension. It will always be generated inMercury, regardless of the
language of your project, so that it can enable support for the Handles syntax in Mercury.

Debugging

Elements comes with integrated support for debugging WebAssembly projects. Web Modules can be debugged in Google Chrome, andNode.js
Modules in the Node.js runtime.

Debugging for both project types is supported locally on Mac and Windows, fromFEire, Water and Visual Studio.

Read more about :

e Debugging WebAssembly Web Modules
o Debugging WebAssembly Node.js Modules

See Also

e Debugging in Fire and Water

e Project Settings
e WebAssembl

Web

To debug Web Modules, you need to have Google Chrome or the Brave Browser installed. With a default installation, the IDEs will usually find Chrome
or Brave automatically, but the following topics will help you set up either, or to point your IDE to a custom browser version:

o Setting up for Web Module Development with Fire on Mac
o Setting up for Web Module Development with Water on Windows
e Setting up for Web Module Development with Visual Studio on Windows

WebAssembly debugging has been tested with Google Chrome, Microsoft Edge (nee Chromium based versions), and the open source Brave Browser,
but might also work with other Chromium-based browsers, such as newer Microsoft Edge versions.

Launching

When running your project from the IDE, theDebugger takes care of launching a new browser istance and pointing it to an internal HTTP server that
serves all the right files, including all the static files in the web folder of your project, as well as a virtualwasm subfolder that contains the compiled
binary and related files.

This way, the path relationship between the test.html file (and related files you might add such as images or stylesheets) and the compiler-generated
files is intact.

By default, your project created with the Web Module template contains a dummyindex.html| for debugging and testing purposes. That file will be
loaded in the browser, load in the compiled .wasm binary, and initialize it. The file contains relative paths that expect the binary in the (virtual)/wasm
subfolder of the HTTP server.

There are two Project Settings used to control this behavior:

e <DebugIndexHtmIFile>Web\index.html</DebugindexHtmIFile> - specifies the test.nhtml file. The path to the file (which usually is relative to the project,
but may also be absolute) will determine the root folder for the HTTP server, while the filename itself will determine the URL to be opened in the
browser on launch.

e <DebugUrl>http://localhost:1234/</DebugUrl> - optionally, a full URL to a test server can be provided. If so, the debugger will not launch its own HTTP
server, but assume a server is running at the given URL, and that you have set it up to properly serve the test HTML and the WebAssembly files.

Debugging

Once your webpage and the wasm module is loaded, you can debug your code the same as you would any other project. For example, you can set
Breakpoints to pause execution when a certain part of your code is hit, and you will automatically "break" into the debugger, if anyException occurs.

You will notice in the Stack Frames Pane that your own code intermingles with stack frames that show JavaScript code, as well as of course frames of
code of the Browser's runtime itself.

See Also

o Debugging with Fire and Water
o Debugging with Visual Studio

e Deploying Web Modules
e Project Settings

Node.js

To debug Node.js Modules, you need to have the Node.js runtime installed. You can typically check if Node.js is installed by running th@ode command
in Terminal/Command Prompt.

With a default installation, the IDEs will usually find the Node.js executable automatically, but the following topics will help you set up Node.js or point
your IDE to a custom Node.js install:

e Setting up for Node.js Development with Fire on Mac
o Setting up for Node.js Development with Water on Windows
o Setting up for Node.js Development with Visual Studio on Windows

Launching

On launch, the IDE will automatically spin up a Node.js executable instance, and attach the debugger to it. This is controlled by the
<DebugNodeEntryPoint> setting, which specified the entry point .js file. The provided path name must be relative to the projectoutput, eg. to the ./Bin
folder, and will typically be pre-set by the project template.

Debugging

Once your your Node.js application is launched, you can debug your code the same as you would any other project. For example, you can set
Breakpoints to pause execution when a certain part of your code is hit, and you will automatically "break" into the debugger, if anyException occurs.

You will notice in the Stack Frames Pane that your own code intermingles with stack frames that show JavaScript code, as well as of course frames of
code of the Node.js runtime itself.

See Also

e Debugging with Fire and Water
o Debugging with Visual Studio

o Deploying Node.js Modules

Deployment

When run from the IDE, theDebugger takes care putting all the pieces for your WebAssembly executable into place. For actual deployment to your
own servers and as part of your larger web or Node.js project, some additional thought is needed.

Note that current browsers only execute WebAssembly code in files loaded via HTTP(S) from a remote server. Youcannot use local files loaded via a
file:/// URL to run WebAssembly. This is a restriction put in place by the browsers, and affects all WebAssembly, not just Elements.

Read more about deployment of:

o WebAssembly Web Modules
e WebAssembly Node.js Modules

See Also

e Debugging in Fire and Water
e Project Settings

o WebAssembl

Web

When run from the IDE, the debuggertakes care of putting all the pieces for your WebAssembly executable into place to run them in the browser. For
actual deployment to your own servers, some additional thought is needed.

Essentially, there are at least three files generated by a WebAssembly project:

e RemObjectsElements.js - this file is shared by all Elements WebAssembly modules, and contains glue code for the interaction between JavaScript
and WebAssembly. While it is generated next to your executable as part of the build, it is a static file and is not affected by the contents of your
project. If you deploy more than one WebAssembly module to the same page, you only need one copy of this file.

e MyModule.js - this file is generated during build and contains project-specific APIs to let JavaScript code interact with the specific types and APIs
your module exposes.

e MyModule.wasm - this, finally, is the actual executable containing the code you wrote, compiled to WASM.

Depending on your project type and contents, additional files might be generated or copied to the output folder, such as resources.

These are in addition to one (or more) HTML pages and reated files that embed and use the WebAssembly module. The project templates create a
dummy index.html for you that's mainly used for debugging and testing purposes. For a real-life deployment, this will be replaced by actualhtml files or
HTML generated server side by your hosting platform such as ASP.NET, PHP or the like, that already exist as part of your site.

Note that current browsers only execute WebAssembly code in files loaded via HTTP(S) from a remote server. Youcannot use local files loaded via a
file:/// URL to run WebAssembly. This is a restriction put in place by the browsers, and affects all WebAssembly, not just Elements.

To deploy the project as is, including the dummyindex.html file, you will want to place the.html into a folder served by your webserver, and the
generated files (from the Bin/Release/WebAssemnbly/wasm32 folder) into the wasm subfolder next to index.html:

.Jindex.html
.Jwasm/RemObjectsElements.js
.Jwasm/MyModule.js
.Jwasm/MyModule.wasm

These paths are not a hard convention; they are simply the paths that the dummyindex.html file uses to access the files. You can choose a different
structure altogether, as long as you adjust the paths in your HTML to match. Within the wasm subfolder, you will want to maintain the folder structure
generated from our project's output, for example for resources subfolders.

The important parts are that the two.js files are loaded via a <script tag, and the call toMyModule.instantiate("wasm/MyModule.wasm") (wWhere MyModule is of
course the actual name of your executable) to load and start up the WebAssembly module:

<script lang="javascript" src="wasm/RemObjectsElements.js"></script>
<script lang="javascript" src="wasm/MyModule.js"></script>

<script lang="javascript">
MyModule.instantiate("wasm/MyModule.wasm").then(function (result) {

console.log("WebAssembly file MyModule.wasm has been loaded.");

var program = result.Program();

program.HelloWorld();

b

</script>

Also note that not all web servers will automatically serve all file types. In particular, IIS will not servewasm files by default, and instead return a 404
error code as if the file does not exist - potentially leading to a "Cannot load MyModule.wasm" error message.

To enable IIS to serve.wasm files open the "MIME Types" configuration panel in IKS admin and add an entry that maps !wasm" to the "application/binary"
MIME type.

The same might apply to other non-standard files that are part of your project, for exampledfm resource files when using Delphi VCL.

See Also

e Debugging Web Modules
e Deploying on Node.js

Node.js

When run from the IDE, the debuggertakes care of putting all the pieces for your WebAssembly executable into place and launch them in the Node.js
runtime. For actual deployment in your larger Node.js project, some additional thought is needed.

Essentially, there are at least three files generated by with a WebAssembly project:

e RemObjectsElements.js - this file is shared by all Elements WebAssembly modules, and contains glue code for the interaction between JavaScript
and WebAssembly. While it is generated next to the executable as part of the build, it is a static file and is not affected by the contents of your
project. If you deploy more than one WebAssembly module to the same page, you only need one copy of this file.

e MyModule.js - this file is generated during build and contains project-specific APIs to let JavaScript code interact with the specific types and APIs
your module exposes.

e MyModule.wasm - this, finally, is the actual executable containing the code you wrote, compiled to WASM.

Depending on your project type and contents, additional files might be generated or copied to the output folder, such as resources.

These are in addition to another "entry.js" JavaScript file contained in your project that defines the Node.js entry point that's mainly used for debugging
purposes. For a real-life deployment, the APIs exposed by your WebAssembly module will more likely be accessed from existing JavaScript code that is
already part of your larger Node.js project.

Using a WebAssembly Module from Your Existing Node.js Project

The default template includes theentry.js file mentioned above, which is there to ease debugging and deployment, but that's not a requirement. The
compiler-emitted MyModule.js file can be used directly with Node.js'require() function:

var MyModule = require("./MyModule").MyModule;

MyModuleis the output name of your project. This .jsfile exposes APIs to access all exported member of your WebAssembly project. There is also a matching MyModule.d.ts"
file to allow for use from TypeScript-based projects.

The base MyModule type exposes a single named instantiate(). instantiate() accepts both an URL string or a ByteArray type to load thewasm file. For
Node.js projects, the ByteArray version should be used, for example by loading it with fs.readFileSync():

const fs = require('fs');

const path = require('path');

var MyModule = require("./MyModule").MyModule;
MyModule.instantiate(fs.readFileSync(path.resolve(__dirname, ‘./MyModule.wasm'))).then(function(result) {

ni

The Promise-typed return ofinstantiate() will have the resulting WebAssembly module as parameter. This will expose members for the APIs exposed by
your WebAssembly module, as static methods (e.g. result.RemObjects_Elements_System_Math_Sin (for RemObjects.Elements.System.Math.Sin) and exported types
(e.g. result.Program in the default template, which can be called to instantiate then and call instance members on).

const fs = require('fs');
var MyModule = require("./MyModule").MyModule;
MyModule.instantiate(fs.readFileSync(path.resolve(__dirname, './MyModule.wasm'))).then(function(result) {

// most roundabout way to call sin:
console.log("Sin call: " + result.RemObjects_Elements_System_Math_Sin(3));

/I instantiate Program
var prog = result.Program();

// call the HelloWorld instance method on it:
prog.HelloWorld();
i

Note that the MyModule.j